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Highly Computable Graphs

Definition
A graph G = (V,E) is highly computable if V and E are
computable sets (i.e., sets whose membership functions are
computable) and there is a computable function that, when given
v ∈ V , outputs the degree of v.

Theorem (Jura, Levin, M.)

For every n ≥ 3, there is a highly computable graph G such that
d(G) = n and dc(G) = n− 1.
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dc(G) < n

Figure : Trapping a purported computable domatic n-partition.
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d(G) = n

Figure : A domatic n-partition of the trap.
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