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Separating the Domatic the Numbers

Let ϕ0, ϕ1, ϕ2, . . . list all partial computable functions N→ N.

Example

There is a computable graph G such that d(G) = 3 but dc(G) < 3.
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Splittable Domatic Partitions
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d(G)− dc(G) for Highly Computable Graphs

Definition
A graph G = (V,E) is highly computable if V and E are
computable sets and there is a computable function that, when
given v ∈ V , outputs the degree of v (i.e., the number of vertices
adjacent to v).

Theorem
For every n ≥ 3, there is a highly computable graph G such that
d(G) = n and dc(G) = n− 1.
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The K−n -Gadget
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dc(G) < n

Figure : Trapping a purported computable domatic n-partition.
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d(G) = n

Figure : A domatic n-partition of the trap.
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An Alternative Trap

Figure : Completing a K−
n Loop.
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A Graph’s Minimal Degree

Definition
The minimal degree of a graph G, denoted by δ(G), is the
minimal degree of the vertices of G.

Theorem (A version of a graph by Zelinka [2])

There exists a computable graph G such that δ(G) = 4, d(G) = 3,
and dc(G) = 2.
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A Zelinka-Type Construction

Figure : Example for δ(G) = 4 and d(G) = 3.

1, 2 1, 3 1, 7 2, 3 5, 6 5, 7 6, 7
. . . . . .

1 2 3 4 5 6 7
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The Union of Zelinka’s Graph with Another

Theorem
There exists a computable graph G such that δ(G) = 4, d(G) = 3,
and dc(G) = 2.

Proof.
Let G = G1 ∪G2, where

• δ(G1) = 4 and d(G1) = 3 (i.e., G1 is our Zelinka-type graph);

• G2 is computable such that d(G2) = 5 (so δ(G2) ≥ 4) and
dc(G2) = 2.
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“It’s a trap!”
Regular Graphs

Total Domatic Partitions

Definition
For any n ≥ 1 and any graph G = (V,E), a (computable) partition
p : V → {1, . . . , n} into n colors is a (computable) total
domatic n-partition if the vertices adjacent to v use up all n
colors (i.e., (∀v ∈ V )(∀i ∈ {1, . . . , n})(∃u ∈ V )[uEv ∧ p(u) = i]).
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The Double K4-Gadget
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An Open Question

“It’s a trap!”
Regular Graphs

The Regular 3-2 Problem

Definition
For any n, a graph is n-regular if the degree of every vertex is n.

Theorem
Every computable 3-regular graph that has a total domatic
3-partition has a computable total domatic 2-partition.
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“It’s a trap!”
Regular Graphs

Double Coloring

Vertices on the border of two sets V0 and V1 will be doubly colored.
Each doubly colored vertex (V0’s Color Choice/V1’s Color Choice)
will be resolved by the rules: If red is present (as either set’s
choice), choose red. Otherwise, choose blue.

Figure : Three Cases.

∈ V0 ∈ V1 ∈ V1
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Future Research

Conjecture

Every highly computable graph with a domatic 4-partition has a
computable domatic 3-partition.
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Questions?

Thank you.
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