The Domatic Numbers of Computable Graphs

Tyler Markkanen

Manhattan College

CUNY Logic Workshop - May 9, 2014

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

Joint with Matthew Jura and Oscar Levin.

Tyler Markkanen Domatic Numbers

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

No domatic 3-partition

Domatic number of a graph G: d(G) = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G: $d^c(G) =$ the max n s.t. G has a computable domatic n-partition (G) = (G) + (G) + (G) + (G)

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Domatic number of a graph G: d(G) = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G: $d^c(G) =$ the max n s.t. G has a computable domatic n-partition a = b + d B +

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Domatic number of a graph G: d(G) = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G: $d^c(G) =$ the max n s.t. G has a computable domatic n-partition a = b + a = b

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Domatic number of a graph G: d(G) = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G: $d^c(G) =$ the max n s.t. G has a computable domatic n-partition a = b + a = b

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Domatic number of a graph G: d(G) = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G: $d^c(G) =$ the max n s.t. G has a computable domatic n-partition $a = b + c = b + c \equiv b + c \equiv b = c = c = c = c$

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Domatic number of a graph G: d(G) = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G: $d^c(G) =$ the max n s.t. G has a computable domatic n-partition $a = b + c = b + c \equiv b + c \equiv b = c = c = c = c$

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Domatic number of a graph G: d(G) = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G: $d^c(G) =$ the max n s.t. G has a computable domatic n-partition a = 1 + a = 2

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Domatic number of a graph G: d(G) = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G: $d^c(G) =$ the max n s.t. G has a computable domatic n-partition $(\Box) + G) + (\Xi) + (\Xi) = 0$

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Domatic number of a graph G: d(G) = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G: $d^c(G) =$ the max n s.t. G has a computable domatic n-partition $\langle \Box \rangle + \langle \overline{G} \rangle + \langle \overline{\Xi} \rangle + \langle \overline{\Xi} \rangle \rangle \equiv 0$

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Domatic Partitions

Domatic number of a graph G:

d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G: $d^c(G) =$ the max n s.t. G has a computable domatic n-partition

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that d(G) = 3 but $d^c(G) < 3$.

The gadget of φ_e :

Springing the trap:

イロト イポト イヨト イヨト

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that d(G) = 3 but $d^c(G) < 3$.

イロト イポト イヨト イヨト

Tyler Markkanen

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that d(G) = 3 but $d^c(G) < 3$.

Springing the trap:

イロト イポト イヨト イヨト

Tyler Markkanen

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that d(G) = 3 but $d^c(G) < 3$.

Springing the trap:

イロト イポト イヨト イヨト

Tyler Markkanen

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that d(G) = 3 but $d^c(G) < 3$.

Springing the trap:

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Tyler Markkanen

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that d(G) = 3 but $d^c(G) < 3$.

The gadget of φ_e :

Springing the trap:

イロト 不得 とう アイロト

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that d(G) = 3 but $d^c(G) < 3$.

Springing the trap:

イロト イポト イヨト イヨト

Tyler Markkanen

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

(日)

$d(G) - d^c(G)$ for Highly Computable Graphs

Definition

A graph G = (V, E) is **highly computable** if V and E are computable sets and there is a computable function that, when given $v \in V$, outputs the degree of v (i.e., the number of vertices adjacent to v).

Theorem

For every $n \ge 3$, there is a highly computable graph G such that d(G) = n and $d^c(G) = n - 1$.

Tyler Markkanen Domatic Numbers

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

・ロト ・回ト ・ヨト ・ヨト

Э

Tyler Markkanen Domatic Numbers

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

Tyler Markkanen Domat

Domatic Numbers

・ロト ・回ト ・ヨト ・ヨト

Э

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

・ロト ・回ト ・ヨト ・ヨト

Э

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

 $d^c(G) < n$

Figure : Trapping a purported computable domatic n-partition.

Domatic Numbers

・ロト ・ 一 ト ・ モ ト ・ モ ト

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

d(G) = n

Domatic Numbers

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

An Alternative Trap

Figure : Completing a K_n^- Loop.

・ロト ・回ト ・ヨト ・ヨト

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

An Alternative Trap

Figure : Completing a K_n^- Loop.

・ロト ・回ト ・ヨト ・ヨト

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

(日)

A Graph's Minimal Degree

Definition

The **minimal degree** of a graph G, denoted by $\delta(G)$, is the minimal degree of the vertices of G.

Theorem (A version of a graph by Zelinka [2])

There exists a computable graph G such that $\delta(G) = 4$, d(G) = 3, and $d^c(G) = 2$.

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

A Zelinka-Type Construction

Figure : Example for $\delta(G) = 4$ and d(G) = 3.

Domatic Numbers

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Highly Computable Graphs Splittable Domatic Partitions Minimal Degree

イロト 人間ト イヨト イヨト

The Union of Zelinka's Graph with Another

Theorem

There exists a computable graph G such that $\delta(G) = 4$, d(G) = 3, and $d^c(G) = 2$.

Proof.

Let $G = G_1 \cup G_2$, where

- $\delta(G_1) = 4$ and $d(G_1) = 3$ (i.e., G_1 is our Zelinka-type graph);
- G_2 is computable such that $d(G_2) = 5$ (so $\delta(G_2) \ge 4$) and $d^c(G_2) = 2$.

"lt's a trap!" Regular Graphs

Total Domatic Partitions

Definition

For any $n \ge 1$ and any graph G = (V, E), a (computable) partition $p: V \to \{1, \ldots, n\}$ into n colors is a (computable) total domatic *n*-partition if the vertices adjacent to v use up all n colors (i.e., $(\forall v \in V)(\forall i \in \{1, \ldots, n\})(\exists u \in V)[uEv \land p(u) = i])$.

(日)

"**It's a trap!**" Regular Graphs

The Double K_4 -Gadget

Tyler Markkanen

Domatic Numbers

▲ロト ▲圖ト ▲屋ト ▲屋ト

"**lt's a trap!**" Regular Graphs

The Double K_4 -Gadget

Tyler Markkanen

Domatic Numbers

"**It's a trap!**" Regular Graphs

The Double K_4 -Gadget

Tyler Markkanen

Domatic Numbers

▲ロト ▲圖ト ▲屋ト ▲屋ト

"**lt's a trap!**" Regular Graphs

The Double K_4 -Gadget

Tyler Markkanen

Domatic Numbers

◆ロト ◆部 ト ◆注 ト ◆注 ト

"**lt's a trap!**" Regular Graphs

The Double K_4 -Gadget

Tyler Markkanen

Domatic Numbers

◆ロト ◆部 ト ◆注 ト ◆注 ト

"lt's a trap!" Regular Graphs

The Regular 3-2 Problem

Definition

For any n, a graph is *n*-regular if the degree of every vertex is n.

Theorem

Every computable 3-regular graph that has a total domatic 3-partition has a computable total domatic 2-partition.

・ロト ・ 同ト ・ ヨト ・ ヨト

"lt's a trap!" Regular Graphs

Double Coloring

"lt's a trap!" Regular Graphs

Double Coloring

"lt's a trap!" Regular Graphs

Double Coloring

"lt's a trap!" Regular Graphs

Double Coloring

Future Research

Conjecture

Every highly computable graph with a domatic 4-partition has a computable domatic 3-partition.

Tyler Markkanen Domatic Numbers

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Questions?

Thank you.

Tyler Markkanen Domatic Numbers

- M. Jura, O. Levin, T. Markkanen, *Domatic partitions of computable graphs*. Archive for Mathematical Logic, Volume 53, Issue 1 (2014), 137–155, DOI 10.1007/s00153-013-0359-2.
- B. Zelinka, *Domatic number and degrees of vertices of a graph*. Mathematica Slovaca, Vol. 33 (1983), No. 2, 145–147.

イロト イポト イヨト イヨト