The Domatic Numbers of Computable Graphs

Tyler Markkanen

Manhattan College

CUNY Logic Workshop – May 9, 2014

K ロ > K d → K l → K l → L → L → D Q Q →

Joint with Matthew Jura and Oscar Levin.

Tyler Markkanen [Domatic Numbers](#page-0-0)

K ロ > K 何 > K 至 > K 至 > 三 宅 → の Q Q <

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

Domatic 2-partition

No domatic 3-partition

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Domatic Partitions

Domatic number of a graph G :

 $d(G)$ = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G : $d^c(G) =$ $d^c(G) =$ $d^c(G) =$ the m[a](#page-22-0)x n s.[t](#page-32-0). \overline{G} \overline{G} \overline{G} has a computabl[e d](#page-13-0)[om](#page-15-0)a[ti](#page-2-0)c n [-p](#page-21-0)artit[io](#page-33-0)n

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that $d(G) = 3$ but $d^c(G) < 3$.

 \rightarrow

The gadget of φ_e :

Springing the trap:

イロン イ押ン イヨン イヨン

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that $d(G) = 3$ but $d^c(G) < 3$.

The gadget of φ_e :

Springing the trap:

イロン イ押ン イヨン イヨン

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that $d(G) = 3$ but $d^c(G) < 3$.

The gadget of φ_e :

Springing the trap:

イロン イ押ン イヨン イヨン

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that $d(G) = 3$ but $d^c(G) < 3$.

The gadget of φ_e :

Springing the trap:

イロン イ押ン イヨン イヨン

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that $d(G) = 3$ but $d^c(G) < 3$.

The gadget of φ_e :

Springing the trap:

イロン イ押ン イヨン イヨン

 Ω

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that $d(G) = 3$ but $d^c(G) < 3$.

The gadget of φ_e :

Springing the trap:

イロト イ押ト イヨト イヨト

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

Separating the Domatic the Numbers

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$. Example

There is a computable graph G such that $d(G) = 3$ but $d^c(G) < 3$.

The gadget of φ_e :

Springing the trap:

イロン イ押ン イヨン イヨン

 Ω

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B}$

 Ω

$d(G) - d^c(G)$ for Highly Computable Graphs

Definition

A graph $G = (V, E)$ is **highly computable** if V and E are computable sets and there is a computable function that, when given $v \in V$, outputs the degree of v (i.e., the number of vertices adjacent to v).

Theorem

For every $n \geq 3$, there is a highly computable graph G such that $d(G) = n$ and $d^c(G) = n - 1$.

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

 $\mathcal{A} \subseteq \mathcal{A} \Rightarrow \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}$

 \equiv

 $\mathcal{O} \subset \mathcal{O}$

The K_n^- -Gadget

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

 $\mathcal{A} \subseteq \mathcal{A} \Rightarrow \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}$

 \equiv

 $\mathcal{O} \subset \mathcal{O}$

The K_n^- -Gadget

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

 $\mathcal{A} \subseteq \mathcal{A} \Rightarrow \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}$

 \equiv

 $\mathcal{O} \subset \mathcal{O}$

The K_n^- -Gadget

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

 $d^c(G) < n$

Figure : Trapping a purported computable domatic n -partition.

Tyler Markkanen [Domatic Numbers](#page-0-0)

イロト イ団 トイモト イモト

 $\mathcal{O} \subset \mathcal{O}$

 \equiv

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

 $d(G) = n$

Tyler Markkanen [Domatic Numbers](#page-0-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 $\mathcal{O} \subset \mathcal{O}$

 \equiv

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-29-0) [Minimal Degree](#page-30-0)

An Alternative Trap

Figure : Completing a K_n^- Loop.

Tyler Markkanen [Domatic Numbers](#page-0-0)

イロト イ部 トイモト イモト

 $\mathcal{O} \subset \mathcal{O}$

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

An Alternative Trap

Figure : Completing a K_n^- Loop.

イロト イ部 トイモト イモト

 $\mathcal{O} \subset \mathcal{O}$

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 Ω

A Graph's Minimal Degree

Definition

The **minimal degree** of a graph G, denoted by $\delta(G)$, is the minimal degree of the vertices of G .

Theorem (A version of a graph by Zelinka [\[2\]](#page-46-0))

There exists a computable graph G such that $\delta(G) = 4$, $d(G) = 3$, and $d^c(G) = 2$.

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

A Zelinka-Type Construction

Figure : Example for $\delta(G) = 4$ and $d(G) = 3$.

Tyler Markkanen [Domatic Numbers](#page-0-0)

イロト イ部 トイモト イモト

 OQ

[Highly Computable Graphs](#page-22-0) [Splittable Domatic Partitions](#page-28-0) [Minimal Degree](#page-30-0)

 $\mathcal{A} \equiv \mathcal{A} \Rightarrow \mathcal{A} \equiv \mathcal{$

 Ω

The Union of Zelinka's Graph with Another

Theorem

There exists a computable graph G such that $\delta(G) = 4$, $d(G) = 3$, and $d^c(G) = 2$.

Proof.

Let $G = G_1 \cup G_2$, where

- $\delta(G_1) = 4$ and $d(G_1) = 3$ (i.e., G_1 is our Zelinka-type graph);
- G_2 is computable such that $d(G_2) = 5$ (so $\delta(G_2) \geq 4$) and $d^c(G_2) = 2.$

["It's a trap!"](#page-34-0) [Regular Graphs](#page-39-0)

Total Domatic Partitions

Definition

For any $n \geq 1$ and any graph $G = (V, E)$, a (computable) partition $p: V \to \{1, \ldots, n\}$ into n colors is a (computable) total **domatic** *n*-partition if the vertices adjacent to v use up all *n* colors (i.e., $(\forall v \in V)(\forall i \in \{1, ..., n\})(\exists u \in V)[uEv \wedge p(u) = i]).$

Tyler Markkanen [Domatic Numbers](#page-0-0)

["It's a trap!"](#page-38-0) [Regular Graphs](#page-39-0)

The Double K_4 -Gadget

イロメ イ部メ イモメ イモメー

 \equiv

 $\mathcal{O} \subset \mathcal{O}$

["It's a trap!"](#page-38-0) [Regular Graphs](#page-39-0)

The Double K_4 -Gadget

Tyler Markkanen [Domatic Numbers](#page-0-0)

イロト イ団 トイ ミト イモト

目に $\mathcal{O} \subset \mathcal{O}$

["It's a trap!"](#page-38-0) [Regular Graphs](#page-39-0)

The Double K_4 -Gadget

Tyler Markkanen [Domatic Numbers](#page-0-0)

イロメ イ部メ イモメ イモメー

 \equiv

 $\mathcal{O} \subset \mathcal{O}$

["It's a trap!"](#page-38-0) [Regular Graphs](#page-39-0)

The Double K_4 -Gadget

Tyler Markkanen [Domatic Numbers](#page-0-0)

イロメ イ部メ イモメ イモメー

目に $\mathcal{O} \subset \mathcal{O}$

["It's a trap!"](#page-34-0) [Regular Graphs](#page-39-0)

The Double K_4 -Gadget

Tyler Markkanen [Domatic Numbers](#page-0-0)

イロト イ部 トイモト イモトー

目

 $\mathcal{O} \subset \mathcal{O}$

["It's a trap!"](#page-34-0) [Regular Graphs](#page-39-0)

The Regular 3-2 Problem

Definition

For any n , a graph is n -regular if the degree of every vertex is n .

Theorem

Every computable 3-regular graph that has a total domatic 3-partition has a computable total domatic 2-partition.

イロト イ押ト イヨト イヨト

 OQ

["It's a trap!"](#page-34-0) [Regular Graphs](#page-39-0)

Double Coloring

Vertices on the border of two sets V_0 and V_1 will be doubly colored. Each doubly colored vertex (V_0) 's Color Choice $/V_1$'s Color Choice) will be resolved by the rules: If red is present (as either set's choice), choose red. Otherwise, choose blue.

["It's a trap!"](#page-34-0) [Regular Graphs](#page-39-0)

Double Coloring

Vertices on the border of two sets V_0 and V_1 will be doubly colored. Each doubly colored vertex (V_0) 's Color Choice $/V_1$'s Color Choice) will be resolved by the rules: If red is present (as either set's choice), choose red. Otherwise, choose blue.

Figure : Three Cases.

["It's a trap!"](#page-34-0) [Regular Graphs](#page-39-0)

Double Coloring

Vertices on the border of two sets V_0 and V_1 will be doubly colored. Each doubly colored vertex (V_0) 's Color Choice $/V_1$'s Color Choice) will be resolved by the rules: If red is present (as either set's choice), choose red. Otherwise, choose blue.

["It's a trap!"](#page-34-0) [Regular Graphs](#page-39-0)

Double Coloring

Vertices on the border of two sets V_0 and V_1 will be doubly colored. Each doubly colored vertex (V_0) 's Color Choice $/V_1$'s Color Choice) will be resolved by the rules: If red is present (as either set's choice), choose red. Otherwise, choose blue.

Future Research

Conjecture

Every highly computable graph with a domatic 4-partition has a computable domatic 3-partition.

Tyler Markkanen [Domatic Numbers](#page-0-0)

イロト イ押ト イヨト イヨト

 \equiv

Questions?

Thank you.

Tyler Markkanen [Domatic Numbers](#page-0-0)

イロト イ団 トメ ミト メ ミトー (音)

 $\mathcal{O} \subset \mathcal{O}$

M. Jura, O. Levin, T. Markkanen, Domatic partitions of computable graphs. Archive for Mathematical Logic, Volume 53, Issue 1 (2014), 137–155, DOI 10.1007/s00153-013-0359-2.

譶 B. Zelinka, Domatic number and degrees of vertices of a graph. Mathematica Slovaca, Vol. 33 (1983), No. 2, 145–147.

イロト イ押ト イヨト イヨト