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Computability Theory Countable Structures Separating Spectra

Preliminaries

f : (⊆ N)→ N is a partial computable (p.c.) function if f is an
algorithm (or computer program).
Let ϕ0, ϕ1, ϕ2, . . . list out all p.c. functions.
Let ϕB

e denote the e-th p.c. function with oracle B ⊆ N.

Definition 1

Fix A,B ⊆ N.

A is B-computable (or computed by B, or computed
from B), written A ≤T B, if χA = ϕB

e for some e.

A,B are Turing-equivalent, written A ≡T B, if A ≤T B and
B ≤T A.

The Turing-degree of A is deg(A) = a =df {D | A ≡T D}.
We write c ≤ d if C ≤T D for some C ∈ c and D ∈ d.
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Computability Theory Countable Structures Separating Spectra

Preliminaries

Example 1 (The Halting Problem)

K = ∅′ = {e | ϕe(e)↓}, where ↓ means “stops and has an output”
0′ = deg(∅′)

Definition 2 (The Jump Operator)

For X ⊆ N, let X ′ = {e | ϕX
e (e)↓}.

Terminology: We say A ∈ ΣB
1 if some ϕB

e can print out A.
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Degree Spectra of Linear Orders & Finite-Component Graphs

Definition 3

The degree of a structure A, written deg(A), is the
Turing-degree of the (atomic) diagram of A:

D(A) = {ϕ(a) | ϕ(x) is atomic or ¬atomic ∧ A |= ϕ(a)}.

The (degree) spectrum of A is

DgSp(A) = {deg(B) | A ∼= B}.
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Degree Spectra of Linear Orders & Finite-Component Graphs

Theorem 1

If A is a linear order and S ⊆ N such that S ∈ Σ
D(B)′

1 for all
B ∼= A, then S ∈ Σ∅

′
1 .

G1 G2

Definition 4

For a finite-component graph G, let

SG = {(C, n) | C is a component of G occurring at least n times}.



Computability Theory Countable Structures Separating Spectra

Degree Spectra of Linear Orders & Finite-Component Graphs

Theorem 1

If A is a linear order and S ⊆ N such that S ∈ Σ
D(B)′

1 for all
B ∼= A, then S ∈ Σ∅

′
1 .

G1 G2

Definition 4

For a finite-component graph G, let

SG = {(C, n) | C is a component of G occurring at least n times}.



Computability Theory Countable Structures Separating Spectra

Degree Spectra of Linear Orders & Finite-Component Graphs

Lemma 1

If G is a finite-component graph, then SG ∈ Σ
D(G)′

1 .

Lemma 2

If G is a finite-component graph, X ⊆ N, and SG ∈ ΣX
1 , then

there is a Ĝ ∼= G such that D(Ĝ) ≤T X.

We say that a degree d computes a structure A if deg(A) ≤ d.

Theorem 2

If A is a linear order and G is a finite-component graph such that
DgSp(A) ⊆ DgSp(G), then 0′ computes a copy of G.
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We say that a degree d computes a structure A if deg(A) ≤ d.

Theorem 2

If A is a linear order and G is a finite-component graph such that
DgSp(A) ⊆ DgSp(G), then 0′ computes a copy of G.



Computability Theory Countable Structures Separating Spectra

Degree Spectra of Linear Orders & Finite-Component Graphs

Theorem 1

If A is a linear order and S ⊆ N such that S ∈ Σ
D(B)′

1 for all
B ∼= A, then S ∈ Σ∅

′
1 .

Theorem 2

If A is a linear order and G is a finite-component graph such that
DgSp(A) ⊆ DgSp(G), then 0′ computes a copy of G.

Proof.
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Linear Orders over Other Structures

Theorem 3

For each of the following classes K, there is a linear order A such
that DgSp(A) 6= DgSp(B) for any B ∈ K.

finite-component graphs

equivalence structures

rank-1 torsion-free abelian groups

daisy graphs

S =
{
{1, 2, 3, 4, 6, . . .}, {0, 3, 4, 6, . . .}, . . .

}

G(S)



Questions?

Thank you.
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Facts & Proofs

Fact

For any degree d, there is a linear order L such that d cannot
compute a copy of L.

Why?
Let X = D(4), 0 6∈ X, for some D ∈ d. Let
X = {x0 < x1 < · · · }. Define the shuffle sum σ(X) of X as
follows. Let u0, u1, . . . partition (Q, <) into sets s.t. ui is dense in
Q. Form σ(X) by replacing each q ∈ ui with xi many points.

SuccL(a1, a2) ⇐⇒ a1 <L a2 ∧ (¬∃c)[a1 <L c <L a2];

BlL(a1, . . . , an) ⇐⇒ (∀b)¬SuccL(b, a1) ∧ (∀b)¬SuccL(an, b)

∧
∧

1≤i<n

SuccL(ai, ai+1).

Let L̂ ∼= σ(X). Then n ∈ X ⇐⇒ (∃a1, . . . , an) BlL̂(a1, . . . , an).

Then X ∈ Σ
D(L̂)
3 , so X ≤T D(L̂)′′′. Clearly deg(L̂) 6≤ d, so d

cannot compute a copy of σ(X).
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∧
∧

1≤i<n
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Let L̂ ∼= σ(X). Then n ∈ X ⇐⇒ (∃a1, . . . , an) BlL̂(a1, . . . , an).

Then X ∈ Σ
D(L̂)
3 , so X ≤T D(L̂)′′′. Clearly deg(L̂) 6≤ d, so d

cannot compute a copy of σ(X).
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Facts & Proofs

Theorem 2

If A is a linear order and G is a finite-component graph such that
DgSp(A) ⊆ DgSp(G), then 0′ computes a copy of G.

Corollary 1

There is a linear order L such that DgSp(L) 6= DgSp(G) for any
finite-component graph G. (We say linear orders are distinguished
over finite-component graphs with respect to spectrum.)

Proof.

Let L be a linear order such that 0′ cannot compute a copy of L.
For a contradiction, assume that DgSp(L) = DgSp(G) for some
finite-component graph G. Then, by Theorem 2, d ≤ 0′ for some
d ∈ DgSp(G). So d ∈ DgSp(L), and 0′ computes a copy of L.



Facts & Proofs

Theorem 2

If A is a linear order and G is a finite-component graph such that
DgSp(A) ⊆ DgSp(G), then 0′ computes a copy of G.

Corollary 1

There is a linear order L such that DgSp(L) 6= DgSp(G) for any
finite-component graph G. (We say linear orders are distinguished
over finite-component graphs with respect to spectrum.)

Proof.

Let L be a linear order such that 0′ cannot compute a copy of L.
For a contradiction, assume that DgSp(L) = DgSp(G) for some
finite-component graph G. Then, by Theorem 2, d ≤ 0′ for some
d ∈ DgSp(G). So d ∈ DgSp(L), and 0′ computes a copy of L.



Facts & Proofs

Theorem 2

If A is a linear order and G is a finite-component graph such that
DgSp(A) ⊆ DgSp(G), then 0′ computes a copy of G.

Corollary 1

There is a linear order L such that DgSp(L) 6= DgSp(G) for any
finite-component graph G. (We say linear orders are distinguished
over finite-component graphs with respect to spectrum.)

Proof.

Let L be a linear order such that 0′ cannot compute a copy of L.
For a contradiction, assume that DgSp(L) = DgSp(G) for some
finite-component graph G. Then, by Theorem 2, d ≤ 0′ for some
d ∈ DgSp(G). So d ∈ DgSp(L), and 0′ computes a copy of L.



Facts & Proofs

Theorem 2

If A is a linear order and G is a finite-component graph such that
DgSp(A) ⊆ DgSp(G), then 0′ computes a copy of G.

Corollary 1

There is a linear order L such that DgSp(L) 6= DgSp(G) for any
finite-component graph G. (We say linear orders are distinguished
over finite-component graphs with respect to spectrum.)

Proof.

Let L be a linear order such that 0′ cannot compute a copy of L.
For a contradiction, assume that DgSp(L) = DgSp(G) for some
finite-component graph G. Then, by Theorem 2, d ≤ 0′ for some
d ∈ DgSp(G). So d ∈ DgSp(L), and 0′ computes a copy of L.



Facts & Proofs

Theorem 2

If A is a linear order and G is a finite-component graph such that
DgSp(A) ⊆ DgSp(G), then 0′ computes a copy of G.

Corollary 1

There is a linear order L such that DgSp(L) 6= DgSp(G) for any
finite-component graph G. (We say linear orders are distinguished
over finite-component graphs with respect to spectrum.)

Proof.

Let L be a linear order such that 0′ cannot compute a copy of L.
For a contradiction, assume that DgSp(L) = DgSp(G) for some
finite-component graph G. Then, by Theorem 2, d ≤ 0′ for some
d ∈ DgSp(G). So d ∈ DgSp(L), and 0′ computes a copy of L.


	Computability Theory
	Preliminaries

	Countable Structures
	Degree Spectra of Linear Orders & Finite-Component Graphs

	Separating Spectra
	Linear Orders over Other Structures

	Appendix
	Questions?

	Appendix
	Facts & Proofs


