Restricting the Turing Degree Spectra of **Structures**

Tyler Markkanen

Springfield College

2015 JMM – AMS Session on Mathematical Logic January 10, 2015

(ロ) (御) (唐) (唐) 道→ 唐| 990

 $f : (\subseteq \mathbb{N}) \to \mathbb{N}$ is a **partial computable (p.c.) function** if f is an algorithm (or computer program). Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list out all p.c. functions. Let φ_e^B denote the $e\text{-th}$ p.c. function with <u>oracle</u> $B\subseteq\mathbb{N}.$

Fix $A, B \subseteq \mathbb{N}$.

- \bullet A is B-computable (or computed by B, or computed **from** B), written $A \leq_T B$, if $\chi_A = \varphi_e^B$ for some e .
- A, B are Turing-equivalent, written $A \equiv_T B$, if $A \leq_T B$ and $B \leq_T A$.
- The Turing-degree of A is $\deg(A) = a = df \{D \mid A \equiv_T D\}.$ We write $c \le d$ if $C \le T$ D for some $C \in c$ and $D \in d$.

KO K K (F K E K E H E V A C K

 $f : (\subseteq \mathbb{N}) \to \mathbb{N}$ is a **partial computable (p.c.) function** if f is an algorithm (or computer program). Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list out all p.c. functions. Let φ_e^B denote the $e\text{-th}$ p.c. function with <u>oracle</u> $B\subseteq\mathbb{N}.$

Definition 1

Fix $A, B \subseteq \mathbb{N}$.

- \bullet A is B-computable (or computed by B, or computed **from** B), written $A \leq_T B$, if $\chi_A = \varphi_e^B$ for some e .
- A, B are Turing-equivalent, written $A \equiv_T B$, if $A \leq_T B$ and $B \leq_T A$.
- The Turing-degree of A is $deg(A) = a =_{df} {D | A \equiv_T D}$. We write $c \le d$ if $C \le_T D$ for some $C \in c$ and $D \in d$.

Example 1 (The Halting Problem)

 $K = \emptyset' = \{e \mid \varphi_e(e)\!\downarrow\}$, where \downarrow means "stops and has an output" $\mathbf{0}' = \deg(\emptyset')$

For
$$
X \subseteq \mathbb{N}
$$
, let $X' = \{e \mid \varphi_e^X(e)\downarrow\}$.

 $\overline{\text{Terminology}}$: We say $A\in \Sigma^B_1$ if some φ_e^B can print out $A.$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있어

Example 1 (The Halting Problem)

 $K = \emptyset' = \{e \mid \varphi_e(e)\!\downarrow\}$, where \downarrow means "stops and has an output" $\mathbf{0}' = \deg(\emptyset')$

Definition 2 (The Jump Operator)

$$
\text{For } X \subseteq \mathbb{N}, \text{ let } X' = \{e \mid \varphi_e^X(e)\!\downarrow\}.
$$

$\overline{\text{Terminology}}$: We say $A\in \Sigma^B_1$ if some φ_e^B can print out $A.$

KO K K (F K E K E H E V A C K

Example 1 (The Halting Problem)

 $K = \emptyset' = \{e \mid \varphi_e(e)\!\downarrow\}$, where \downarrow means "stops and has an output" $\mathbf{0}' = \deg(\emptyset')$

Definition 2 (The Jump Operator)

$$
\text{For } X \subseteq \mathbb{N}, \text{ let } X' = \{e \mid \varphi_e^X(e)\downarrow\}.
$$

 $\overline{\text{Terminology}}$: We say $A\in \Sigma^B_1$ if some φ^B_e can print out $A.$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있어

KO K K (F K E K E H E V A C K

[Degree Spectra of Linear Orders & Finite-Component Graphs](#page-6-0)

Definition 3

• The **degree** of a structure \mathfrak{A} , written $\deg(\mathfrak{A})$, is the Turing-degree of the (atomic) diagram of \mathfrak{A} :

 $D(\mathfrak{A}) = \{ \varphi(\overline{a}) \mid \varphi(\overline{x}) \text{ is atomic or } \neg \text{atomic} \land \mathfrak{A} \models \varphi(\overline{a}) \}.$

• The (degree) spectrum of $\mathfrak A$ is

 $\text{DgSp}(\mathfrak{A}) = \{ \text{deg}(\mathfrak{B}) \mid \mathfrak{A} \cong \mathfrak{B} \}.$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

[Degree Spectra of Linear Orders & Finite-Component Graphs](#page-7-0)

Definition 3

• The **degree** of a structure \mathfrak{A} , written $\deg(\mathfrak{A})$, is the Turing-degree of the (atomic) diagram of \mathfrak{A} :

 $D(\mathfrak{A}) = \{ \varphi(\overline{a}) \mid \varphi(\overline{x}) \text{ is atomic or } \neg \text{atomic} \land \mathfrak{A} \models \varphi(\overline{a}) \}.$

• The (degree) spectrum of $\mathfrak A$ is

 $\text{DgSp}(\mathfrak{A}) = \{ \text{deg}(\mathfrak{B}) \mid \mathfrak{A} \cong \mathfrak{B} \}.$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

[Degree Spectra of Linear Orders & Finite-Component Graphs](#page-8-0)

Theorem 1

If $\mathfrak A$ is a linear order and $S\subseteq \mathbb N$ such that $S\in \Sigma_1^{D(\mathfrak B)'}$ $\frac{D(2)}{1}$ for all $\mathfrak{B} \cong \mathfrak{A}$, then $S \in \Sigma_1^{\emptyset'}$ $\frac{\varphi}{1}$.

For a finite-component graph \mathfrak{G} , let

 $S_{\mathfrak{G}} = \{ (C, n) \mid C \text{ is a component of } \mathfrak{G} \text{ occurring at least } n \text{ times} \}.$

KID KAR KE KE KE EE YAN

[Degree Spectra of Linear Orders & Finite-Component Graphs](#page-9-0)

Theorem 1

If $\mathfrak A$ is a linear order and $S\subseteq \mathbb N$ such that $S\in \Sigma_1^{D(\mathfrak B)'}$ $\frac{D(2)}{1}$ for all $\mathfrak{B} \cong \mathfrak{A}$, then $S \in \Sigma_1^{\emptyset'}$ $\frac{\varphi}{1}$.

Definition 4

For a finite-component graph \mathfrak{G} , let

 $S_{\mathfrak{G}} = \{(C, n) | C$ is a component of \mathfrak{G} occurring at least n times}.

Lemma 1

If $\mathfrak G$ is a finite-component graph, then $S_{\mathfrak G}\in \Sigma^{D(\mathfrak G)'}_1$ $\frac{D(\mathcal{O})}{1}$.

Lemma 2

If $\mathfrak G$ is a finite-component graph, $X\subseteq \mathbb N$, and $S_{\mathfrak G}\in \Sigma^X_1$, then there is a $\hat{\mathfrak{G}} \cong \mathfrak{G}$ such that $D(\hat{\mathfrak{G}}) \leq_T X$.

We say that a degree d computes a structure $\mathfrak A$ if $\deg(\mathfrak A) \leq d$.

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G})$, then $\mathsf{0}'$ computes a copy of $\mathfrak{G}.$

Lemma 1

If $\mathfrak G$ is a finite-component graph, then $S_{\mathfrak G}\in \Sigma^{D(\mathfrak G)'}_1$ $\frac{D(\mathcal{O})}{1}$.

Lemma 2

If $\mathfrak G$ is a finite-component graph, $X\subseteq \mathbb N$, and $S_{\mathfrak G}\in \Sigma^X_1$, then there is a $\hat{\mathfrak{G}} \cong \mathfrak{G}$ such that $D(\hat{\mathfrak{G}}) \leq_T X$.

We say that a degree d computes a structure $\mathfrak A$ if $\deg(\mathfrak A)\leq{\bf d}$.

Theorem 2

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G})$, then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Theorem [1](#page-8-1)

If $\mathfrak A$ is a linear order and $S\subseteq \mathbb N$ such that $S\in \Sigma_1^{D(\mathfrak B)'}$ $\frac{D(\mathcal{D})}{1}$ for all $\mathfrak{B} \cong \mathfrak{A},$ then $S \in \Sigma_1^{\emptyset'}$ $\frac{\varphi}{1}$.

Theorem [2](#page-10-1)

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Proof.

Fix $\mathfrak{B} \cong \mathfrak{A}$. Let $\mathfrak{G} \cong \mathfrak{G}$ such that $D(\mathfrak{G}) \leq_T D(\mathfrak{B})$. Then (by Lemma [1\)](#page-10-2) $S_{\mathfrak{G}}=S_{\hat{\mathfrak{G}}}\!\!\in \Sigma_1^{D(\hat{\mathfrak{G}})'}\!\!\subseteq \Sigma_1^{D(\mathfrak{B})'}$ $\frac{D(\mathcal{D})}{1}$. So by Theorem [1](#page-8-1) $S_{\mathfrak{G}} \in \Sigma_1^{\emptyset'}$ $\widetilde{\mathfrak{g}}$. Thus by Lemma [2](#page-10-3) there is a $\tilde{\mathfrak{G}}\cong \mathfrak{G}$ such that $D(\tilde{\mathfrak{G}}) \leq_T \emptyset'$, so $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Theorem [1](#page-8-1)

If $\mathfrak A$ is a linear order and $S\subseteq \mathbb N$ such that $S\in \Sigma_1^{D(\mathfrak B)'}$ $\frac{D(\mathcal{D})}{1}$ for all $\mathfrak{B} \cong \mathfrak{A},$ then $S \in \Sigma_1^{\emptyset'}$ $\frac{\varphi}{1}$.

Theorem [2](#page-10-1)

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Proof.

Fix $\mathfrak{B} \cong \mathfrak{A}$. Let $\mathfrak{G} \cong \mathfrak{G}$ such that $D(\mathfrak{G}) \leq_T D(\mathfrak{B})$. Then (by Lemma [1\)](#page-10-2) $S_{\mathfrak{G}}=S_{\hat{\mathfrak{G}}}\!\!\in \Sigma_1^{D(\hat{\mathfrak{G}})'}\!\!\subseteq \Sigma_1^{D(\mathfrak{B})'}$ $\frac{D(\mathcal{D})}{1}$. So by Theorem [1](#page-8-1) $S_{\mathfrak{G}} \in \Sigma_1^{\emptyset'}$ $\stackrel{\emptyset}{\scriptstyle\gamma}$. Thus by Lemma [2](#page-10-3) there is a $\tilde{\mathfrak{G}}\cong\mathfrak{G}$ such that $D(\tilde{\mathfrak{G}}) \leq_T \emptyset'$, so $\mathsf{0}^\prime$ computes a copy of $\mathfrak{G}.$

Theorem [1](#page-8-1)

If $\mathfrak A$ is a linear order and $S\subseteq \mathbb N$ such that $S\in \Sigma_1^{D(\mathfrak B)'}$ $\frac{D(\mathcal{D})}{1}$ for all $\mathfrak{B} \cong \mathfrak{A},$ then $S \in \Sigma_1^{\emptyset'}$ $\frac{\varphi}{1}$.

Theorem [2](#page-10-1)

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Proof.

Fix $\mathfrak{B} \cong \mathfrak{A}$. Let $\mathfrak{G} \cong \mathfrak{G}$ such that $D(\mathfrak{G}) \leq_T D(\mathfrak{B})$. Then (by Lemma [1\)](#page-10-2) $S_{\mathfrak{G}}=S_{\hat{\mathfrak{G}}}\!\!\in \Sigma_1^{D(\hat{\mathfrak{G}})'}\!\!\!\subseteq \Sigma_1^{\mathcal{D}(\mathfrak{B})'}$ $\frac{D(\mathcal{D})}{1}$. So by Theorem [1](#page-8-1) $S_{\mathfrak{G}} \in \Sigma_1^{\emptyset'}$ $\stackrel{\emptyset}{\scriptstyle\gamma}$. Thus by Lemma [2](#page-10-3) there is a $\tilde{\mathfrak{G}}\cong\mathfrak{G}$ such that $D(\tilde{\mathfrak{G}}) \leq_T \emptyset'$, so $\mathsf{0}^\prime$ computes a copy of $\mathfrak{G}.$

Theorem [1](#page-8-1)

If $\mathfrak A$ is a linear order and $S\subseteq \mathbb N$ such that $S\in \Sigma_1^{D(\mathfrak B)'}$ $\frac{D(\mathcal{D})}{1}$ for all $\mathfrak{B} \cong \mathfrak{A},$ then $S \in \Sigma_1^{\emptyset'}$ $\frac{\varphi}{1}$.

Theorem [2](#page-10-1)

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Proof.

Fix $\mathfrak{B} \cong \mathfrak{A}$. Let $\mathfrak{G} \cong \mathfrak{G}$ such that $D(\mathfrak{G}) \leq_T D(\mathfrak{B})$. Then (by Lemma [1\)](#page-10-2) $S_{\mathfrak{G}}=S_{\hat{\mathfrak{G}}}\!\!\in \Sigma_1^{D(\hat{\mathfrak{G}})'}\!\!\subseteq \Sigma_1^{D(\mathfrak{B})'}$ $\frac{D(2)}{1}$. So by Theorem [1](#page-8-1) $S_{\mathfrak{G}} \in \Sigma_1^{\emptyset'}$ $\stackrel{\emptyset}{\scriptstyle\gamma}$. Thus by Lemma [2](#page-10-3) there is a $\tilde{\mathfrak{G}}\cong\mathfrak{G}$ such that $D(\tilde{\mathfrak{G}}) \leq_T \emptyset'$, so $\mathsf{0}^\prime$ computes a copy of $\mathfrak{G}.$

Theorem [1](#page-8-1)

If $\mathfrak A$ is a linear order and $S\subseteq \mathbb N$ such that $S\in \Sigma_1^{D(\mathfrak B)'}$ $\frac{D(\mathcal{D})}{1}$ for all $\mathfrak{B} \cong \mathfrak{A},$ then $S \in \Sigma_1^{\emptyset'}$ $\frac{\varphi}{1}$.

Theorem [2](#page-10-1)

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Proof.

Fix $\mathfrak{B} \cong \mathfrak{A}$. Let $\mathfrak{G} \cong \mathfrak{G}$ such that $D(\mathfrak{G}) \leq_T D(\mathfrak{B})$. Then (by Lemma [1\)](#page-10-2) $S_{\mathfrak{G}}=S_{\hat{\mathfrak{G}}}\!\!\in \Sigma_1^{D(\hat{\mathfrak{G}})'}\!\!\subseteq \Sigma_1^{D(\mathfrak{B})'}$ $\frac{D(2)}{1}$. So by Theorem [1](#page-8-1) $S_{\mathfrak{G}} \in \Sigma^{\emptyset'}_1$ $\stackrel{\emptyset}{\mathbf{1}}$. Thus by Lemma [2](#page-10-3) there is a $\tilde{\mathfrak{G}}\cong \mathfrak{G}$ such that $D(\tilde{\mathfrak{G}}) \leq_T \emptyset'$, so $\mathsf{0}^\prime$ computes a copy of $\mathfrak{G}.$

Theorem [1](#page-8-1)

If $\mathfrak A$ is a linear order and $S\subseteq \mathbb N$ such that $S\in \Sigma_1^{D(\mathfrak B)'}$ $\frac{D(\mathcal{D})}{1}$ for all $\mathfrak{B} \cong \mathfrak{A},$ then $S \in \Sigma_1^{\emptyset'}$ $\frac{\varphi}{1}$.

Theorem [2](#page-10-1)

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Proof.

Fix $\mathfrak{B} \cong \mathfrak{A}$. Let $\mathfrak{G} \cong \mathfrak{G}$ such that $D(\mathfrak{G}) \leq_T D(\mathfrak{B})$. Then (by Lemma [1\)](#page-10-2) $S_{\mathfrak{G}}=S_{\hat{\mathfrak{G}}}\!\!\in \Sigma_1^{D(\hat{\mathfrak{G}})'}\!\!\subseteq \Sigma_1^{D(\mathfrak{B})'}$ $\frac{D(2)}{1}$. So by Theorem [1](#page-8-1) $S_{\mathfrak{G}} \in \Sigma_1^{\emptyset'}$ $\widetilde{\mathfrak{g}}$ '. Thus by Lemma [2](#page-10-3) there is a $\tilde{\mathfrak{G}}\cong \mathfrak{G}$ such that $D(\tilde{\mathfrak{G}}) \leq_T \emptyset'$, so $0'$ computes a copy of $\mathfrak{G}.$

Theorem [1](#page-8-1)

If $\mathfrak A$ is a linear order and $S\subseteq \mathbb N$ such that $S\in \Sigma_1^{D(\mathfrak B)'}$ $\frac{D(\mathcal{D})}{1}$ for all $\mathfrak{B} \cong \mathfrak{A},$ then $S \in \Sigma_1^{\emptyset'}$ $\frac{\varphi}{1}$.

Theorem [2](#page-10-1)

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Proof.

Fix $\mathfrak{B} \cong \mathfrak{A}$. Let $\mathfrak{G} \cong \mathfrak{G}$ such that $D(\mathfrak{G}) \leq_T D(\mathfrak{B})$. Then (by Lemma [1\)](#page-10-2) $S_{\mathfrak{G}}=S_{\hat{\mathfrak{G}}}\!\!\in \Sigma_1^{D(\hat{\mathfrak{G}})'}\!\!\subseteq \Sigma_1^{D(\mathfrak{B})'}$ $\frac{D(2)}{1}$. So by Theorem [1](#page-8-1) $S_{\mathfrak{G}} \in \Sigma_1^{\emptyset'}$ $\widetilde{\mathfrak{g}}$ '. Thus by Lemma [2](#page-10-3) there is a $\tilde{\mathfrak{G}}\cong \mathfrak{G}$ such that $D(\tilde{\mathfrak{G}}) \leq_T \emptyset'$, so $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

[Linear Orders over Other Structures](#page-19-0)

Theorem 3

For each of the following classes K , there is a linear order $\mathfrak A$ such that $\text{DgSp}(\mathfrak{A}) \neq \text{DgSp}(\mathfrak{B})$ for any $\mathfrak{B} \in \mathcal{K}$.

- finite-component graphs
- equivalence structures
- rank-1 torsion-free abelian groups
- daisy graphs

$$
S = \left\{ \{1, 2, 3, 4, 6, \ldots\}, \{0, 3, 4, 6, \ldots\}, \ldots \right\}
$$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

Thank you.

C. J. Ash and J. Knight.

Computable structures and the hyperarithmetical hierarchy, volume 144 of Studies in Logic and the Foundations of Mathematics.

North-Holland Publishing Co., Amsterdam, 2000.

Julia F. Knight.

Degrees coded in jumps of orderings. J. Symbolic Logic, 51(4):1034–1042, 1986.

E Linda Jean Richter.

Degrees of structures.

J. Symbolic Logic, 46(4):723–731, 1981.

Robert I. Soare.

Computability Theorey and Applications [CTA]. under contract with Springer-Verlag, Berlin, 20?? (under revision).

KOD KARD KED KED EN MAG

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? $\operatorname{\sf Let}\, X=D^{(4)},\, 0\not\in X,$ for some $D\in {\bf d}.$ Let $X = \{x_0 < x_1 < \cdots \}$. Define the **shuffle sum** $\sigma(X)$ of X as follows. Let u_0,u_1,\ldots partition $(\mathbb{Q},<)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathcal{E}}(a_1, a_2) \iff a_1 \leq_{\mathcal{E}} a_2 \wedge (\neg \exists c)[a_1 \leq_{\mathcal{E}} c \leq_{\mathcal{E}} a_2];$ $Bl_{\mathfrak{L}}(a_1, \ldots, a_n) \iff (\forall b) \neg \operatorname{Succ}_{\mathfrak{L}}(b, a_1) \wedge (\forall b) \neg \operatorname{Succ}_{\mathfrak{L}}(a_n, b)$ $\wedge \bigwedge \text{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$ Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\rho}}(a_1, \ldots, a_n)$. Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_{3}^{D(\mathfrak{L})}$, so $X\leq_T D(\hat{\mathfrak{L}})'''.$ Clearly $\deg(\hat{\mathfrak{L}})\not\leq \mathbf{d},$ so \mathbf{d} cannot compute a copy of $\sigma(X)$. KO K K (F K E K E H E V A C K

For any degree d, there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the shuffle sum $\sigma(X)$ of X as follows. Let u_0,u_1,\ldots partition $(\mathbb{Q},<)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathcal{E}}(a_1, a_2) \iff a_1 \leq_{\mathcal{E}} a_2 \wedge (\neg \exists c)[a_1 \leq_{\mathcal{E}} c \leq_{\mathcal{E}} a_2];$ $Bl_{\mathfrak{L}}(a_1, \ldots, a_n) \iff (\forall b) \neg \operatorname{Succ}_{\mathfrak{L}}(b, a_1) \wedge (\forall b) \neg \operatorname{Succ}_{\mathfrak{L}}(a_n, b)$ $\wedge \bigwedge \text{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$ Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\rho}}(a_1, \ldots, a_n)$. Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_{3}^{D(\mathfrak{L})}$, so $X\leq_T D(\hat{\mathfrak{L}})'''.$ Clearly $\deg(\hat{\mathfrak{L}})\not\leq \mathbf{d},$ so \mathbf{d} cannot compute a copy of $\sigma(X)$. KO K K (F K E K E K A E K A K K K K K K K K K

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the **shuffle sum** $\sigma(X)$ of X as **follows.** Let u_0, u_1, \ldots partition $(\mathbb{Q}, <)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathcal{L}}(a_1, a_2) \iff a_1 <_{\mathcal{L}} a_2 \wedge (\neg \exists c)[a_1 <_{\mathcal{L}} c <_{\mathcal{L}} a_2];$ $Bl_{\mathfrak{L}}(a_1, \ldots, a_n) \iff (\forall b) \neg \operatorname{Succ}_{\mathfrak{L}}(b, a_1) \wedge (\forall b) \neg \operatorname{Succ}_{\mathfrak{L}}(a_n, b)$ $\wedge \bigwedge \text{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$ Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\rho}}(a_1, \ldots, a_n)$.

Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_{3}^{D(\mathfrak{L})}$, so $X\leq_T D(\hat{\mathfrak{L}})'''.$ Clearly $\deg(\hat{\mathfrak{L}})\not\leq \mathbf{d},$ so \mathbf{d} cannot compute a copy of $\sigma(X)$. KO K K (F K E K E K A E K A K K K K K K K K K

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the **shuffle sum** $\sigma(X)$ of X as follows. Let u_0, u_1, \ldots partition $(\mathbb{Q}, <)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathcal{E}}(a_1, a_2) \iff a_1 \leq_{\mathcal{E}} a_2 \wedge (\neg \exists c)[a_1 \leq_{\mathcal{E}} c \leq_{\mathcal{E}} a_2];$ $Bl_{\mathfrak{L}}(a_1, \ldots, a_n) \iff (\forall b) \neg \operatorname{Succ}_{\mathfrak{L}}(b, a_1) \wedge (\forall b) \neg \operatorname{Succ}_{\mathfrak{L}}(a_n, b)$ $\wedge \bigwedge \text{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$

Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\rho}}(a_1, \ldots, a_n)$. Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_{3}^{D(\mathfrak{L})}$, so $X\leq_T D(\hat{\mathfrak{L}})'''.$ Clearly $\deg(\hat{\mathfrak{L}})\not\leq \mathbf{d},$ so \mathbf{d} cannot compute a copy of $\sigma(X)$. **KOD KAD KED KED EE VAN**

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the **shuffle sum** $\sigma(X)$ of X as follows. Let u_0, u_1, \ldots partition $(\mathbb{Q}, <)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points.

 $Succ_{\mathcal{E}}(a_1, a_2) \iff a_1 <_{\mathcal{E}} a_2 \wedge (\neg \exists c)[a_1 <_{\mathcal{E}} c <_{\mathcal{E}} a_2];$ $\text{Bl}_{\mathfrak{L}}(a_1,\ldots,a_n) \iff (\forall b) \neg \text{Succ}_{\mathfrak{L}}(b,a_1) \land (\forall b) \neg \text{Succ}_{\mathfrak{L}}(a_n,b)$

$$
\wedge \bigwedge_{1 \leq i < n} \text{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).
$$

Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\sigma}}(a_1, \ldots, a_n)$. Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_{3}^{D(\mathfrak{L})}$, so $X\leq_T D(\hat{\mathfrak{L}})'''.$ Clearly $\deg(\hat{\mathfrak{L}})\not\leq \mathbf{d},$ so \mathbf{d} cannot compute a copy of $\sigma(X)$. **ALL AND AREA THE COOK**

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the **shuffle sum** $\sigma(X)$ of X as follows. Let u_0, u_1, \ldots partition $(\mathbb{Q}, <)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathcal{E}}(a_1, a_2) \iff a_1 <_{\mathcal{E}} a_2 \wedge (\neg \exists c)[a_1 <_{\mathcal{E}} c <_{\mathcal{E}} a_2];$ $Bl_{\mathfrak{L}}(a_1, \ldots, a_n) \iff (\forall b) \neg \operatorname{Succ}_{\mathfrak{L}}(b, a_1) \wedge (\forall b) \neg \operatorname{Succ}_{\mathfrak{L}}(a_n, b)$ $\wedge \bigwedge \text{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$

Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\rho}}(a_1, \ldots, a_n)$. Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_{3}^{D(\mathfrak{L})}$, so $X\leq_T D(\hat{\mathfrak{L}})'''.$ Clearly $\deg(\hat{\mathfrak{L}})\not\leq \mathbf{d},$ so \mathbf{d} cannot compute a copy of $\sigma(X)$. **ALL AND AREA THE COOK**

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the **shuffle sum** $\sigma(X)$ of X as follows. Let u_0, u_1, \ldots partition $(\mathbb{Q}, <)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathcal{E}}(a_1, a_2) \iff a_1 <_{\mathcal{E}} a_2 \wedge (\neg \exists c)[a_1 <_{\mathcal{E}} c <_{\mathcal{E}} a_2];$ $\text{Bl}_{\mathfrak{L}}(a_1,\ldots,a_n) \iff (\forall b) \neg \text{Succ}_{\mathfrak{L}}(b,a_1) \land (\forall b) \neg \text{Succ}_{\mathfrak{L}}(a_n,b)$ $\wedge \bigwedge \operatorname{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$ $1\leq i\leq n$

Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\rho}}(a_1, \ldots, a_n)$. Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_{3}^{D(\mathfrak{L})}$, so $X\leq_T D(\hat{\mathfrak{L}})'''.$ Clearly $\deg(\hat{\mathfrak{L}})\not\leq \mathbf{d},$ so \mathbf{d} cannot compute a copy of $\sigma(X)$. **ALL AND AREA THE COOK**

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the **shuffle sum** $\sigma(X)$ of X as follows. Let u_0, u_1, \ldots partition $(\mathbb{Q}, <)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathcal{E}}(a_1, a_2) \iff a_1 <_{\mathcal{E}} a_2 \wedge (\neg \exists c)[a_1 <_{\mathcal{E}} c <_{\mathcal{E}} a_2];$ $\text{Bl}_{\mathfrak{L}}(a_1,\ldots,a_n) \iff (\forall b) \neg \text{Succ}_{\mathfrak{L}}(b,a_1) \land (\forall b) \neg \text{Succ}_{\mathfrak{L}}(a_n,b)$ $\wedge \bigwedge \operatorname{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$ $1\leq i\leq n$

Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\rho}}(a_1, \ldots, a_n)$. Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_{3}^{D(\mathfrak{L})}$, so $X\leq_T D(\hat{\mathfrak{L}})'''.$ Clearly $\deg(\hat{\mathfrak{L}})\not\leq \mathbf{d},$ so \mathbf{d} cannot compute a copy of $\sigma(X)$. **ALL AND AREA THE COOK**

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the **shuffle sum** $\sigma(X)$ of X as follows. Let u_0, u_1, \ldots partition $(\mathbb{Q}, <)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathcal{L}}(a_1, a_2) \iff a_1 <_{\mathcal{L}} a_2 \wedge (\neg \exists c)[a_1 <_{\mathcal{L}} c <_{\mathcal{L}} a_2];$ $\text{Bl}_{\mathfrak{L}}(a_1,\ldots,a_n) \iff (\forall b) \neg \text{Succ}_{\mathfrak{L}}(b,a_1) \land (\forall b) \neg \text{Succ}_{\mathfrak{L}}(a_n,b)$ $\wedge \bigwedge \operatorname{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$ $1\leq i\leq n$

Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\sigma}}(a_1, \ldots, a_n)$. Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_{3}^{D(\mathfrak{L})}$, so $X\leq_T D(\hat{\mathfrak{L}})'''.$ Clearly $\deg(\hat{\mathfrak{L}})\not\leq \mathbf{d},$ so \mathbf{d} cannot compute a copy of $\sigma(X)$. **ALL AND AREA THE COOK**

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the **shuffle sum** $\sigma(X)$ of X as follows. Let u_0, u_1, \ldots partition $(\mathbb{Q}, <)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathfrak{L}}(a_1, a_2) \iff a_1 <_{\mathfrak{L}} a_2 \wedge (\neg \exists c)[a_1 <_{\mathfrak{L}} c <_{\mathfrak{L}} a_2];$ $\text{Bl}_{\mathfrak{L}}(a_1,\ldots,a_n) \iff (\forall b) \neg \text{Succ}_{\mathfrak{L}}(b,a_1) \land (\forall b) \neg \text{Succ}_{\mathfrak{L}}(a_n,b)$ $\wedge \bigwedge \operatorname{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$ $1\leq i\leq n$

Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\sigma}}(a_1, \ldots, a_n)$. Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_{\mathbf{3}}^{D(\mathfrak{L})}$, so $X\leq_T D(\hat{\mathfrak{L}})'''.$ Clearly $\deg(\hat{\mathfrak{L}})\not\leq \mathrm{d},$ so d cannot compute a copy of $\sigma(X)$. **ALL AND AREA THE COOK**

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the **shuffle sum** $\sigma(X)$ of X as follows. Let u_0, u_1, \ldots partition $(\mathbb{Q}, <)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathfrak{L}}(a_1, a_2) \iff a_1 <_{\mathfrak{L}} a_2 \wedge (\neg \exists c)[a_1 <_{\mathfrak{L}} c <_{\mathfrak{L}} a_2];$ $\text{Bl}_{\mathfrak{L}}(a_1,\ldots,a_n) \iff (\forall b) \neg \text{Succ}_{\mathfrak{L}}(b,a_1) \land (\forall b) \neg \text{Succ}_{\mathfrak{L}}(a_n,b)$ $\wedge \bigwedge \operatorname{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$ $1\leq i\leq n$ Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\sigma}}(a_1, \ldots, a_n)$. Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_3^{D(\mathfrak{L})}$, so $X\le_T D(\hat{\mathfrak{L}})'''.$ Clearly $\deg(\hat{\mathfrak{L}})\not\le\mathrm{d},$ so d

cannot compute a copy of $\sigma(X)$. **KOD KAD KED KED EN AQO**

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the **shuffle sum** $\sigma(X)$ of X as follows. Let u_0, u_1, \ldots partition $(\mathbb{Q}, <)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathfrak{L}}(a_1, a_2) \iff a_1 <_{\mathfrak{L}} a_2 \wedge (\neg \exists c)[a_1 <_{\mathfrak{L}} c <_{\mathfrak{L}} a_2];$ $\text{Bl}_{\mathfrak{L}}(a_1,\ldots,a_n) \iff (\forall b) \neg \text{Succ}_{\mathfrak{L}}(b,a_1) \land (\forall b) \neg \text{Succ}_{\mathfrak{L}}(a_n,b)$ $\wedge \bigwedge \operatorname{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$ $1\leq i\leq n$ Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\mathfrak{L}}}(a_1, \ldots, a_n)$.

Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$ $_3^{D(\mathfrak{L})}$, so $X \le_T D(\hat{\mathfrak{L}})'''$. Clearly $\deg(\hat{\mathfrak{L}}) \not\le \mathbf{d}$, so d cannot compute a copy of $\sigma(X)$. **KOD KAD KED KED EN AQO**

For any degree d , there is a linear order $\mathfrak L$ such that d cannot compute a copy of \mathfrak{L} .

Why? Let $X=D^{(4)},\ 0\not\in X,$ for some $D\in\mathbf{d}.$ Let $X = \{x_0 < x_1 < \cdots\}$. Define the **shuffle sum** $\sigma(X)$ of X as follows. Let u_0, u_1, \ldots partition $(\mathbb{Q}, <)$ into sets s.t. u_i is dense in Q. Form $\sigma(X)$ by replacing each $q \in u_i$ with x_i many points. $Succ_{\mathcal{L}}(a_1, a_2) \iff a_1 <_{\mathcal{L}} a_2 \wedge (\neg \exists c)[a_1 <_{\mathcal{L}} c <_{\mathcal{L}} a_2];$ $\text{Bl}_{\mathfrak{L}}(a_1,\ldots,a_n) \iff (\forall b) \neg \text{Succ}_{\mathfrak{L}}(b,a_1) \land (\forall b) \neg \text{Succ}_{\mathfrak{L}}(a_n,b)$ $\wedge \bigwedge \operatorname{Succ}_{\mathfrak{L}}(a_i, a_{i+1}).$ $1\leq i\leq n$ Let $\hat{\mathfrak{L}} \cong \sigma(X)$. Then $n \in X \iff (\exists a_1, \ldots, a_n) \text{Bl}_{\hat{\mathfrak{L}}}(a_1, \ldots, a_n)$. Then $X \in \Sigma_3^{D(\hat{\mathfrak{L}})}$

 $_3^{D(\mathfrak{L})}$, so $X \le_T D(\hat{\mathfrak{L}})'''$. Clearly $\deg(\hat{\mathfrak{L}}) \not\le \mathbf{d}$, so \mathbf{d} cannot compute a copy of $\sigma(X)$. **KOD KAD KED KED EN AQO**

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Corollary 1

There is a linear order $\mathfrak L$ such that $\mathrm{DgSp}(\mathfrak L)\neq \mathrm{DgSp}(\mathfrak G)$ for any finite-component graph \mathfrak{G} . (We say linear orders are distinguished over finite-component graphs with respect to spectrum.)

Proof.

Let $\mathfrak L$ be a linear order such that $\mathbf 0'$ cannot compute a copy of $\mathfrak L$.

For a contradiction, assume that $\text{DgSp}(\mathfrak{L}) = \text{DgSp}(\mathfrak{G})$ for some finite-component graph $\mathfrak{G}.$ Then, by Theorem [2,](#page-10-1) $\mathbf{d} \leq \mathbf{0}'$ for some $\mathbf{d} \in \mathrm{DgSp}(\mathfrak{G})$. So $\mathbf{d} \in \mathrm{DgSp}(\mathfrak{L})$, and $\mathbf{0}'$ computes a copy of \mathfrak{L} .

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Corollary 1

There is a linear order $\mathfrak L$ such that $\mathrm{DgSp}(\mathfrak L)\neq \mathrm{DgSp}(\mathfrak G)$ for any finite-component graph \mathfrak{G} . (We say linear orders are distinguished over finite-component graphs with respect to spectrum.)

Proof.

Let $\mathfrak L$ be a linear order such that $\mathbf 0'$ cannot compute a copy of $\mathfrak L$. For a contradiction, assume that $\text{DgSp}(\mathfrak{L}) = \text{DgSp}(\mathfrak{G})$ for some finite-component graph \mathfrak{G} . Then, by Theorem [2,](#page-10-1) $d \leq 0'$ for some $\mathbf{d} \in \mathrm{DgSp}(\mathfrak{G})$. So $\mathbf{d} \in \mathrm{DgSp}(\mathfrak{L})$, and $\mathbf{0}'$ computes a copy of \mathfrak{L} .

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Corollary 1

There is a linear order $\mathfrak L$ such that $\mathrm{DgSp}(\mathfrak L)\neq \mathrm{DgSp}(\mathfrak G)$ for any finite-component graph \mathfrak{G} . (We say linear orders are distinguished over finite-component graphs with respect to spectrum.)

Proof.

Let $\mathfrak L$ be a linear order such that $\mathbf 0'$ cannot compute a copy of $\mathfrak L$. For a contradiction, assume that $\text{DgSp}(\mathfrak{L}) = \text{DgSp}(\mathfrak{G})$ for some finite-component graph $\mathfrak{G}.$ Then, by Theorem [2,](#page-10-1) $\mathbf{d}\leq\mathbf{0}'$ for some $\mathbf{d} \in \mathrm{DgSp}(\mathfrak{G})$. So $\mathrm{d} \in \mathrm{DgSp}(\mathfrak{L})$, and $0'$ computes a copy of \mathfrak{L} .

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Corollary 1

There is a linear order $\mathfrak L$ such that $\mathrm{DgSp}(\mathfrak L)\neq \mathrm{DgSp}(\mathfrak G)$ for any finite-component graph \mathfrak{G} . (We say linear orders are distinguished over finite-component graphs with respect to spectrum.)

Proof.

Let $\mathfrak L$ be a linear order such that $\mathbf 0'$ cannot compute a copy of $\mathfrak L$. For a contradiction, assume that $\text{DgSp}(\mathfrak{L}) = \text{DgSp}(\mathfrak{G})$ for some finite-component graph $\mathfrak{G}.$ Then, by Theorem [2,](#page-10-1) $\mathbf{d}\leq\mathbf{0}'$ for some $\mathbf{d} \in \mathrm{DgSp}(\mathfrak{G})$. So $\mathbf{d} \in \mathrm{DgSp}(\mathfrak{L})$, and $0'$ computes a copy of \mathfrak{L} .

If $\mathfrak A$ is a linear order and $\mathfrak G$ is a finite-component graph such that $\mathrm{DgSp}(\mathfrak{A})\subseteq \mathrm{DgSp}(\mathfrak{G}),$ then $\mathbf{0}'$ computes a copy of $\mathfrak{G}.$

Corollary 1

There is a linear order $\mathfrak L$ such that $\mathrm{DgSp}(\mathfrak L)\neq \mathrm{DgSp}(\mathfrak G)$ for any finite-component graph \mathfrak{G} . (We say linear orders are distinguished over finite-component graphs with respect to spectrum.)

Proof.

Let $\mathfrak L$ be a linear order such that $\mathbf 0'$ cannot compute a copy of $\mathfrak L$. For a contradiction, assume that $\text{DgSp}(\mathfrak{L}) = \text{DgSp}(\mathfrak{G})$ for some finite-component graph $\mathfrak{G}.$ Then, by Theorem [2,](#page-10-1) $\mathbf{d}\leq\mathbf{0}'$ for some $\mathbf{d} \in \mathrm{DgSp}(\mathfrak{G})$. So $\mathbf{d} \in \mathrm{DgSp}(\mathfrak{L})$, and $\mathbf{0}'$ computes a copy of \mathfrak{L} .