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f: (€ N) — N is a partial computable (p.c.) function if f is an
algorithm (or computer program).

Let g, @1, @2, ... list out all p.c. functions.
Let 2 denote the e-th p.c. function with oracle B C N.

Definition 1
Fix A,B C N.

e A is B-computable (or computed by B, or computed
from B), written A <7 B, if xa = @ for some e.

e A, B are Turing-equivalent, written A =7 B, if A <p B and
B <r A.

@ The Turing-degree of A is deg(A) =a=4{D | A=r D}.
We write c < d if C <p D for some C € ¢c and D € d.
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Example 1 (The Halting Problem)

K =0 ={e| pe(e)l}, where | means “stops and has an output”
0" = deg(())

Definition 2 (The Jump Operator)

For X CN, let X' = {e | ¢X(e)l}.

Terminology: We say A € %% if some pZ can print out A.
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@ The degree of a structure 2, written deg(2l), is the
Turing-degree of the (atomic) diagram of 2:

D) = {p(a) | p(T) is atomic or ~atomic A2 |= ¢(a)}.

@ The (degree) spectrum of 2 is

DgSp(2) = {deg(B) | A = B}.
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Definition 4
For a finite-component graph &, let

Se = {(C,n) | C is a component of & occurring at least n times}.
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Lemma 2

| \

If® isa fir]ite—component grapfj, X CN, and Sg € E{(, then
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We say that a degree d computes a structure 2 if deg(2) < d.

If 2 is a linear order and & is a finite-component graph such that
DgSp(21) € DgSp(®), then 0’ computes a copy of &.
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Theorem 2
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| A

Proof.
Fix B = 2. Let & = & such that D(&) <7 D(B).
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If 2 is a linear order and S C N such that S € E?(%)l for all

B =, then S € E({y.

Theorem 2

If 2 is a linear order and & is a finite-component graph such that
DgSp(2l) € DgSp(®), then 0’ computes a copy of &.

Proof.

Fix B 2 2. Let & = & such that D(&) < D(%B). Then (by
Lemma 1) Sp = Sgz€ E?(QS)IQ Zf)(%)/. So by Theorem 1

Se € quy_ Thus by Lemma 2 there is a & = & such that
D(&) <7 I, so 0' computes a copy of &.

| A
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.

Linear Orders over Other Structures

Theorem 3
For each of the following classes IC, there is a linear order 2l such
that DgSp(2l) # DgSp(B) for any B € K.

@ finite-component graphs

@ equivalence structures

@ rank-1 torsion-free abelian groups

@ daisy graphs

S:{{1,2,3,4,6,...}, {0,3,4,6,...}, ... }



Thank you.



[§ C.J. Ash and J. Knight.
Computable structures and the hyperarithmetical hierarchy,
volume 144 of Studies in Logic and the Foundations of
Mathematics.
North-Holland Publishing Co., Amsterdam, 2000.

@ Julia F. Knight.
Degrees coded in jumps of orderings.
J. Symbolic Logic, 51(4):1034-1042, 1986.

[W Linda Jean Richter.
Degrees of structures.
J. Symbolic Logic, 46(4):723-731, 1981.

[ Robert I. Soare.
Computability Theorey and Applications [CTA].
under contract with Springer-Verlag, Berlin, 2077
(under revision).



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?
Let X = D@, o ¢ X, for some D € d.



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?
Let X = D™, 0¢ X, forsome D € d. Let
X:{J}o<$1<"-}.



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?

Let X = D@, o ¢ X, for some D € d. Let

X ={zop < z1 < ---}. Define the shuffle sum o(X) of X as
follows.



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?

Let X = D@, o ¢ X, for some D € d. Let

X ={zop < z1 < ---}. Define the shuffle sum o(X) of X as
follows. Let wug,u, ... partition (Q, <) into sets s.t. u; is dense in

Q.



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?

Let X = D@, o ¢ X, for some D € d. Let

X ={zop < z1 < ---}. Define the shuffle sum o(X) of X as
follows. Let wug,u, ... partition (Q, <) into sets s.t. u; is dense in
Q. Form o(X) by replacing each ¢ € u; with x; many points.



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?

Let X = D@, o ¢ X, for some D € d. Let

X ={zop < z1 < ---}. Define the shuffle sum o(X) of X as
follows. Let wug,u, ... partition (Q, <) into sets s.t. u; is dense in
Q. Form o(X) by replacing each ¢ € u; with x; many points.

Succe(a,a2) <= a1 <g az A (=3c)[a1 <g ¢ <g asl;



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?

Let X = D@, o ¢ X, for some D € d. Let

X ={zop < z1 < ---}. Define the shuffle sum o(X) of X as
follows. Let wug,u, ... partition (Q, <) into sets s.t. u; is dense in
Q. Form o(X) by replacing each ¢ € u; with x; many points.

Succe(a,a2) <= a1 <g az A (=3c)[a1 <g ¢ <g asl;
Blg(aq,...,a,) <= (Vb)—Succe(b,a1) A (Vb)— Succe(an, b)

A\ Succe(ai,aita).
1<i<n



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?
Let X = D@, o ¢ X, for some D € d. Let
X ={zop < z1 < ---}. Define the shuffle sum o(X) of X as
follows. Let wug,u, ... partition (Q, <) into sets s.t. u; is dense in
Q. Form o(X) by replacing each ¢ € u; with x; many points.
Succe(a,a2) <= a1 <g az A (=3c)[a1 <g ¢ <g asl;
Blg(aq,...,a,) <= (Vb)—Succe(b,a1) A (Vb)— Succe(an, b)

A\ Succe(ai,aita).
1<i<n

Let £2 o(X).



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?
Let X = D@, o ¢ X, for some D € d. Let
X ={zop < z1 < ---}. Define the shuffle sum o(X) of X as
follows. Let wug,u, ... partition (Q, <) into sets s.t. u; is dense in
Q. Form o(X) by replacing each ¢ € u; with x; many points.
Succe(a,a2) <= a1 <g az A (=3c)[a1 <g ¢ <g asl;
Blg(aq,...,a,) <= (Vb)—Succe(b,a1) A (Vb)— Succe(an, b)

A\ Succe(ai,aita).
1<i<n

Let £ o(X). Thenn e X < (3ay,...,an)Blg(ag, ..., an).



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?

Let X = D@, o ¢ X, for some D € d. Let

X ={xg < z1 < ---}. Define the shuffle sum o(X) of X as

follows. Let wug,u, ... partition (Q, <) into sets s.t. u; is dense in

Q. Form o(X) by replacing each ¢ € u; with x; many points.

Succe(a,a2) <= a1 <g az A (=3c)[a1 <g ¢ <g asl;
Blg(aq,...,a,) <= (Vb)—Succe(b,a1) A (Vb)— Succe(an, b)
A\ Succe(ai,aita).
1<i<n
Let £ o(X). Thenn e X < (3ai,...,an) Bla(ai, ..., an).
Then X € £29),



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?

Let X = D@, o ¢ X, for some D € d. Let

X ={xg < z1 < ---}. Define the shuffle sum o(X) of X as

follows. Let wug,u, ... partition (Q, <) into sets s.t. u; is dense in

Q. Form o(X) by replacing each ¢ € u; with x; many points.

Succe(a,a2) <= a1 <g az A (=3c)[a1 <g ¢ <g asl;
Blg(aq,...,a,) <= (Vb)—Succe(b,a1) A (Vb)— Succe(an, b)
A\ Succe(ai,aita).
1<i<n
Let £ o(X). Thenn e X < (3ai,...,an) Bla(ai, ..., an).
Then X € B2 so X <7 D(8)".



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?

Let X = D@, o ¢ X, for some D € d. Let

X ={xg < z1 < ---}. Define the shuffle sum o(X) of X as

follows. Let wug,u, ... partition (Q, <) into sets s.t. u; is dense in

Q. Form o(X) by replacing each ¢ € u; with x; many points.

Succe(a,a2) <= a1 <g az A (=3c)[a1 <g ¢ <g asl;
Blg(aq,...,a,) <= (Vb)—Succe(b,a1) A (Vb)— Succe(an, b)
A /\ Succe(ag, ait1).
1<i<n
Let £ o(X). Thenn e X < (3ai,...,an) Bla(ai, ..., an).
Then X € 25(2), so X <p D(£)". Clearly deg(£) £ d,



Facts & Proofs

For any degree d, there is a linear order £ such that d cannot
compute a copy of £.

Why?

Let X = D@, o ¢ X, for some D € d. Let
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Let £ o(X). Thenn e X < (3ai,...,an) Bla(ai, ..., an).
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There is a linear order £ such that DgSp(£) # DgSp(®) for any
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