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In computable model theory, mathematical structures are studied on the basis of

their computability or computational complexity. The degree spectrum DgSp(A)

of a countable structure A is one way to measure the computability of the struc-

ture. Given various classes of countable structures, such as linear orders, groups,

and graphs, we separate two classes K1 and K2 in the following way: we say that

K1 is distinguished from K2 with respect to degree spectrum if there is an A ∈ K1

such that for all B ∈ K2, DgSp(A) 6= DgSp(B). In the dissertation, we will inves-

tigate this separation idea. We look at specific choices for K1 and K2—for exam-

ple, we show that linear orders are distinguished from finite-component graphs,

equivalence structures, rank-1 torsion-free abelian groups, and daisy graphs with

respect to degree spectrum. Out of these proofs, there comes a general pattern

for the kinds of structures from which linear orders are distinguished with respect

to degree spectrum. In the future, we may also replace linear orders with possibly

more general kinds of structures.
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Chapter 1

Introduction

1.1 Computable model theory

This dissertation is in computable model theory. We will assume that the reader

is familiar with the basic notions of computable model theory as presented in Ash

& Knight [2] and Downey [12].

In this dissertation, all languages are computable and all structures are

countable. Specifically, every structure A is assumed to have domain (or universe)

|A| = N. We drop mention of the specific language in use (e.g., we often write

“structure” instead of “L-structure”) either when the mention of it is unimportant

or when the language is clear from context.

Now in order for us to study computable model theory, we first need a way

to measure the computational complexity of structures. The degree of a structure

measures such complexity and is defined as follows.

Definition 1.1.1. Let L be a computable language, and let A be an L-structure

with domain |A| = N. The degree of A, denoted deg(A), is the Turing degree of
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the set

D(A) = {ϕ(a) | ϕ(x) is an atomic or negated atomic L-formula and A |= ϕ(a)}.

We call D(A) the atomic diagram of A. In this definition, and throughout this

dissertation, we equate formulas with their Gödel numbers.

One tool that captures the entire range of possible degrees (or codings) of

a structure A is the degree spectrum of A, defined as follows.

Definition 1.1.2. Let A be a countable structure. The degree spectrum (or

spectrum) of A, denoted DgSp(A), is the set

DgSp(A) = {deg(B) | B ∼= A}.

As a quick note on terminology, an isomorphic copy, a copy, and a presen-

tation of A will all mean the same thing: a structure B isomorphic to A. For a

Turing degree d, a d-copy or a d-presentation of A is just a structure B ∼= A such

that deg(B) = d.

For any structure that we discuss, we can assume its degree spectrum is

closed upwards. Indeed, Julia Knight shows in [23] that degree spectra are closed

upwards for nontrivial structures:

Theorem 1.1.3 (Knight). Let A be a structure in a relational language. Then

exactly one of the following holds:

(1) If d ≥ deg(A), then d = deg(B) for some B ∼= A.
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(2) There is a finite S ⊆ N such that all permutations of N that fix S are

automorphisms of A.

In the intro chapter of Hirschfeldt, Khoussainov, Shore, and Slinko [20], we

see some theorems concerning degree spectra, two of which we state below. The

first theorem is a restatement of Theorem 1.1.3, only now we say that a structure A

is trivial if it satisfies condition (2) above. The second theorem tells of a structure

whose degree spectrum contains all degrees but 0 = degT (∅).

Theorem 1.1.4 (Thm 1.19 in [20], Knight). If A is not trivial, then DgSp(A) is

closed upward.

Theorem 1.1.5 (Thm 1.20 in [20], Slaman; Wehner). There is a structure A such

that DgSp(A) = D− {0}, where D is the set of all Turing degrees.

By a class of structures, we mean the collection of all structures that model

a fixed theory. Now, given two distinct classes of structures, we wish to compare

them based on the complexity of their structures, so we’ll ask questions about the

structures’ degree spectra. One way to compare the degree spectra of structures

from one class and the degree spectra of structures in another class is to answer

the question, “Given two classes of structures K1 and K2, is there a structure

A ∈ K1 such that for every structure B ∈ K2, DgSp(A) 6= DgSp(B)?” Questions

of this form are the driving force of this dissertation.
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1.2 Results of Richter

Implicit in our use of degree spectra, when comparing two structures, is the fact

that the degree of a structure alone is not enough. Indeed, deg(A) is not isomor-

phically invariant—sometimes deg(A) 6= deg(Â) even when A ∼= Â. Linda Jean

Richter partially remedies this problem in her thesis [28]. Indeed, we can often pin

down one particular degree for all the isomorphic copies of a structure. If DgSp(A)

has a least element, then we define the degree of the isomorphism class of A to be

that least degree. To give a little background in the chapters to come, we’ll now

present some of Richter’s results from [28] that explore degrees of isomorphism

classes.

Definition 1.2.1. Given a structure A, a finite structure C, and an embedding

f : C ↪→ A, define the class

AC,f = {D | D is a finite structure extending C

and embeddable in A by a map extending f}.

The structure A is said to satisfy the Computable Embeddability Condition (CEC)

iff for all finite C embeddable in A and for all functions f embedding C into A,

AC,f is computable.

Theorem 1.2.2 (Richter). For any countable structure A which satisfies the CEC,

there is an isomorphic structure B such that {deg(A), deg(B)} is a minimal pair

(i.e., if c ≤ deg(A) and c ≤ deg(B), then c = 0).
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Richter showed that countable linear orders satisfy the CEC and hence ob-

tained the following theorem.

Theorem 1.2.3 (Richter). For any countable linear order L, if DgSp(L) has a

least element, then that element is 0.

The following theorem of Richter shows the conditions in which a sequence

of special finite structures can be combined to form a structure whose spectrum

can have any least element of our choosing.

Theorem 1.2.4 (Richter). Let K be a class of structures. If

1. there is a computable sequence A0,A1, . . . of finite structures such that Ai 6↪→

Aj for all i 6= j, and

2. for each S ⊆ N, there is a structure AS such that:

(a) AS ∈ K,

(b) D(AS) ≤T S, and

(c) Ai ↪→ AS iff i ∈ S,

then, for any degree d, there is an A ∈ K such that d = min DgSp(A).

For a concrete example of this, we can apply the theorem to finite-component

graphs.

Definition 1.2.5. In the following definitions, we assume graphs to be directed

graphs.
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(1) A graph is connected if every pair of vertices is connected by a sequence

of edges.

(2) The components of a graph are its maximal connected subgraphs.

(3) A finite-component graph is a graph with only finite components.

Corollary 1.2.6. For every degree d, there is a finite-component graph Gd such

that DgSp(Gd) has least element d.

Proof. Let K be the class of finite-component graphs, and let Ai be a cycle of size

i+ 2 (i.e., a graph whose set of edges has the form

{(a0, a1), (a1, a2), . . . , (ai, ai+1), (ai+1, a0)}.)

For every S ⊆ N, let AS be the disjoint union of cycles Ai for all i ∈ S. By

Theorem 1.2.4, our desired Gd exists. (Notice the reason that (b) holds. The

set of edges EAS of AS is c.e. in S. So given the question, “Is it the case that

vEASu?” for two vertices v and u, first determine whether or not v and u are in

the same cycle of AS by listing EAS and eventually finding all the vertices of the

one or two cycles needed. If v and u are in separate cycles or if they are in the

same cycle and are not connected by an edge, we output “no,” but otherwise we

output “yes.”)

Now we have a specific example as a positive answer to our main question,

“Given two classes of structures K1 and K2, is there a structure A ∈ K1 such that

for every structure B ∈ K2, DgSp(A) 6= DgSp(B)?”
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Theorem 1.2.7. There is a finite-component graph G such that DgSp(G) 6=

DgSp(L) for all linear orders L.

Proof. Fix a linear order L, and let Gd be as in Corollary 1.2.6 for d = 0′ =

degT (∅′), where ∅′ = {e | ϕe(e) ↓}. Then 0 6∈ DgSp(Gd), which has a least

element, 0′. But by Theorem 1.2.3 it’s either the case that 0 ∈ DgSp(L) or

DgSp(L) has no least element. So DgSp(L) 6= DgSp(Gd).

As another note on directed graphs, although the proof of Theorem 1.1.5

originally used more exotic structures, it can be modified to show that there is

a directed graph whose degree spectrum is all the degrees but 0. Now in light of

our above result, this highlights an open question: Can a linear order achieve this

spectrum? In Chapter 2, we will prove the reverse separation of degree spectra

for finite-component graphs and linear orders. Namely, we will show that there is

a linear order whose degree spectrum cannot be realized by any finite-component

graph.

Rank-1 torsion-free abelian groups give a second example of this kind of

theorem.

Definition 1.2.1. (1) A group G is said to have torsion if there is an element of

finite order, and G is torsion-free otherwise.

(2) The rank of a group G is the least n such that G is isomorphic to a

subgroup of Qn. So a rank-1 group is a group isomorphic to a subgroup of Q.



11

In Coles, Downey, and Slaman [7], we have a proof of the following.

Theorem 1.2.8 (Downey). For every degree d, there is a rank-1 torsion-free

abelian group Gd such that DgSp(Gd) has least element d.

So by arguing as in Theorem 1.2.7, we can make another separation of degree

spectra:

Theorem 1.2.9. There is a rank-1 torsion-free abelian group G such that DgSp(G)

6= DgSp(L) for all linear orders L.

In Chapter 2, we will prove the reverse separation of degree spectra for

rank-1 torsion-free abelian groups and linear orders. Namely, we will show that

there is a linear order whose degree spectrum cannot be realized by any rank-1

torsion-free abelian group.

1.3 A result of Knight

There are some degree spectra without a least element. For example, as seen from

Theorem 1.2.3, if a linear order L has no 0-presentation, then DgSp(L) has no

least element. In response to this, instead of finding the least of the degrees, Carl

Jockusch suggested finding the least of the jump(s) of the degrees. Recall that for

a set X, the jump of X is the set X ′ = {e | ϕXe (e)↓}, and the nth jump of X for

n > 0 is X(n) = (X(n−1))′, where X(0) = X. Also, if x = degT (X), then we write

x(n) = degT (X(n)), x′ = x(1), x′′ = x(2), and x′′′ = x(3).
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Definition 1.3.1. A structure A has nth jump degree d if

d = min{deg(B)(n) | B ∼= A}.

Knight [23] shows the following.

Theorem 1.3.2 (Knight). If a linear order L has a jump degree (i.e., a 1st jump

degree), then that degree is 0′.

So we see that linear orders with no presentation of low degree (a subclass

of the linear orders with no 0-presentation) will be without jump degree. Also,

this leads to a certain separation of degree spectra for equivalence structures and

linear orders:

There is an equivalence structure E such that DgSp(E) 6= DgSp(L) for

any linear order L.

Definition 1.3.3. An equivalence structure E is a structure consisting of one

relation ∼E that is an equivalence relation (i.e., for all x, y, z ∈ |E|, we have

x ∼E x, x ∼E y =⇒ y ∼E x, and x ∼E y ∧ y ∼E z =⇒ x ∼E z). For each

x ∈ |E|, let [x]E denote the equivalence class of E that contains x.

Theorem 1.3.4. Let d ≥ 0′. There is an equivalence structure with jump degree

d.

Proof. Fix D ∈ d such that 0 6∈ D, without loss of generality. Let E = (N,∼E)

be the equivalence structure with
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• one class of size 2n for each n ∈ D,

• one class of size 2n+ 1 for each n 6∈ D, and

• infinitely many classes of infinite size.

To show that E has jump degree d, it suffices to show that (1) for any F ∼= E,

D ≤T D(F)′ and that (2) there is an F ∼= E such that D(F)′ ≤T D.

(1): Let F = (N,∼F) be isomorphic to E. For any s, let Fs = ({0, 1, . . . , s},∼F).

For each x ≤ s, D(F)′ can answer

(∃y > s)x ∼F y.

If “No,” then [x]Fs = [x]F, and so D(F)′ knows |[x]F|. To compute D, at each

stage s, D(F)′ asks for each x ≤ s whether [x]Fs = [x]F and, if they are equal,

calculates |[x]Fs|. Eventually D(F)′ finds a class of size 2n or 2n+ 1 and can thus

correctly determine whether n ∈ D.

(2) By the Friedberg Jump Inversion Theorem (i.e., Thm VI.3.1 in Soare [30],

called there the Friedberg Completeness Criterion), fix C such that C ′ ≡T D. We

show that there is an F ∼= E such that D(F) ≤T C (so that D(F)′ ≤T C ′ ≡T D).

Since D ≤T C ′, the Relativized Limit Lemma shows there is a C-computable

function f(x, s) such that

x ∈ D ⇐⇒ lim
s→∞

f(x, s) = 1 and x 6∈ D ⇐⇒ lim
s→∞

f(x, s) = 0.
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Build F in stages:

At stage s, for each x ≤ s, calculate f(x, s) using C. If f(x, s) = 1 and

there is currently no F-class of size 2x, then add one. If there is an F-class of size

2x + 1, then turn it into an infinite class. If f(x, s) = 0 and there is no F-class

of size 2x+ 1, then add one. If there is an F-class of size 2x, then turn it into an

infinite class. Also, add one new infinite class at each stage.

So as mentioned we obtain the following separation of degree spectra.

Theorem 1.3.5. There is an equivalence structure E such that DgSp(E) 6= DgSp(L)

for any linear order L.

Proof. Let E be an equivalence structure with jump degree > 0′. Let L be a

linear order. By Theorem 1.3.2, L can only have jump degree 0′. Therefore,

{deg(B)′ | B ∼= E} 6= {deg(B)′ | B ∼= L}, so DgSp(E) 6= DgSp(L).

1.4 Summary of results

Given two classes of structures, K1 and K2, we say that K1 is distinguished from

K2 with respect to degree spectrum if there is an A ∈ K1 such that for every

B ∈ K2, DgSp(A) 6= DgSp(B). From known results in computable model theory,

we have seen some classes of structures that are distinguished from linear orders

with respect to degree spectrum. In the coming chapters, we will reverse the

question and show that linear orders are distinguished from the following classes:
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• finite-component graphs,

• equivalence structures,

• rank-1 torsion-free abelian groups, and

• daisy graphs.

Although we will wait until Chapter 3 for the definition of daisy graphs, we

will note here that there is a significant difference between the method we use for

the first three of these classes and the method we use for daisy graphs. Indeed, the

first three of these classes have canonical codes in the form of sets, whereas daisy

graph have canonical codes in the form of families of sets. Chapter 2 is devoted to

canonical codes that are sets. Section 2.1 extends the results of Knight ultimately

linking degree spectra with sets. Sections 2.2-2.4 then apply this method to finite-

component graphs, equivalence structures, and rank-1 torsion-free abelian groups.

Chapter 3 is devoted to canonical codes that are families of sets. Section 3.1 takes

a step beyond the methods of Section 2.1 to now link degree spectra with families

of sets. And Section 3.2 applies this to daisy graph and in fact shows a general

setup for the potential of more applications in the future.



Chapter 2

Extending Knight’s result

2.1 The extension

We wish to find more examples that separate the degree spectra of structures in

the sense of Chapter 1. And in fact, by first extending a theorem of Knight, we’ll

find examples of the specific form, “There is a linear order whose degree spectrum

is not that of any (name of other structure here) .” Now Theorem 3.5 of Knight [23] says

that if the jump of every copy of a linear order computes a fixed set S ⊆ N, then

in fact ∅′ computes S. In other words,

Theorem 2.1.1 (Knight [23]). Let A be a linear order, and suppose that S ≤T

D(B)′ for all B ∼= A. Then S ≤T ∅′.

To obtain the desired extending theorem, we have the following Σ0
1 version

of Theorem 2.1.1, and the rest of this section is devoted to its proof:

(Theorem 2.1.14.) If A is a linear order and S ⊆ N such that

S ∈ Σ
D(B)′

1 for all B ∼= A, then S ∈ Σ0
2.

16
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This will be stated as Theorem 2.1.14 at the end of the section. Now to

prove Theorem 2.1.14, we will use the forcing methods of §1 in [23] to build

a particular copy of the linear order A which will lead to the conclusion that

S ∈ Σ0
2. Specifically, fix a structure A. The set F of forcing conditions is the set

of finite partial 1-1 functions N → N ordered by extension ⊇. A chain of forcing

conditions p0 ⊆ p1 ⊆ · · · yields a permutation p =
⋃
i∈N pi of N and the resulting

model B has its structure given by pulling the structure over from A by p. That

is, we make p an isomorphism between the structures.

We recall the definitions of the forcing statements used in [23] and add

new statements needed for the proof of Theorem 2.1.14. Intuitively speaking, the

notation p A ψ will mean that A is the structure being copied and p forces ψ,

where ψ is a select statement about the atomic diagram of the copy B of A being

built. Note that in the forcing language, D is used to denote D(B), and D(m) is

used to denote D(B)(m).

Definition 2.1.2. Let p A ψ be defined as follows.

1. ψ is k ∈ D:

p A ψ ⇐⇒ k is an open sentence (i.e., a sentence without quantifiers, re-

calling that we identify sentences with their Gödel numbers) with constants

from ran(p) and the corresponding sentence with constants from dom(p) is

in D(A).

p A ¬ψ ⇐⇒ either k is not an open sentence in the language of D(B) or
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k is such a sentence and p A l ∈ D, where l is the code for the negation of

the formula coded by k.

2. ψ is k ∈ D(m) for some m > 0:

p A ψ ⇐⇒ there are finite sets α and β such that p A k ∈ D(m−1) for

all k ∈ α, p A k 6∈ D(m−1) for all k ∈ β, and if α ⊆ X ⊆ N− β, then there

is a halting computation of ϕXk (k) (using just this information about X).

p A ¬ψ ⇐⇒ there is no q ⊇ p such that q A ψ.

Notice that forcing negation here is different than for m = 0.

3. ψ is ϕD
(m)

e (k) = l:

p A ψ ⇐⇒ there are finite sets α, β such that p A k ∈ D(m) for all k ∈ α,

p A k 6∈ D(m) for all k ∈ β, and α ⊆ X ⊆ N − β makes ϕXe (k) = l (i.e.,

some computation uses just this information about X).

p A ¬ψ ⇐⇒ there is no q ⊇ p such that q A ψ.

4. ψ is ϕD
(m)

e (k) converges:

p A ψ ⇐⇒ p A ϕ
D(m)

e (k) = l for some l.

p A ¬ψ (i.e., p A ϕD
(m)

e (k) diverges) ⇐⇒ there is no q ⊇ p such that

q A ψ.

After defining the needed forcing statements, §1 of [23] proceeds to describe

how we actually build the desired copy B of A. For every n, let S(n) be the
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set of statements of the forms k ∈ D(m), ϕD
(m)

e (k) = l, and ϕD
(m)

e (k) converges,

for m ≤ n. Let p0 ⊆ p1 ⊆ · · · be an n-complete forcing sequence for S(n) (i.e.,

a sequence such that for every ψ ∈ S(n), there is an i such that pi A ψ or

pi A ¬ψ), and let π =
⋃
i∈N pi. Then π is a permutation of N, and (pi)i∈N

determines a generic copy B of A such that A ∼=π B. Now we get the essential

fact that S(n)-truth in B is exactly forced, that is:

Fact 2.1.3 (Lemma 1.1 of Knight [23]). For all ψ ∈ S(n), ψ is true of B iff for

some i, pi A ψ.

To capture the notion that S ≤T D(B)(m) in the proof of Theorem 2.1.1,

[23] continues the above list with an added informal forcing statement:

5. ψ is ϕD
(m)

e = χS for some S ⊆ N:

p A ψ ⇐⇒ for all k, there is some q ⊇ p such that q A ϕ
D(m)

e (k) = χS(k),

and for all l 6= χS(k), there is no q ⊇ p such that q A ϕ
D(m)

e (k) = l.

This is not a formal forcing statement, since it is not preserved under extensions.

Also, this motivates the definition of a new quasi forcing statement that will

be useful to us. We use the notation “♦p
A ” (echoing modal logic’s possibility

symbol ♦) instead of “p A” to indicate that the statement is not preserved under

extensions (as formal forcing statements should be). Because our goal is to prove

Theorem 2.1.14, we must capture the idea of S being Σ
D(B)′

1 when building B,

hence the following continuation of Definition 2.1.2.
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Definition 2.1.4. Let ♦p
A ψ be defined as follows.

5. ψ is WD(m)

e = S for some S ⊆ N:

♦p
AW

D(m)

e = S ⇐⇒ S = {k | (∃q ⊇ p)(∃l)q A ϕ
D(m)

e (k) = l}.

As a final note on forcing before heading to our new results, we know that,

for the basic statements ψ, it is easy to determine whether p A ψ. Specifically,

we have the following fact.

Fact 2.1.5 (Lemma 1.2 of Knight [23]). The relations p A k ∈ D and p A k 6∈ D

are computable in D(A). For m > 0, the relation p A k ∈ D(m) is c.e. in

D(A)(m−1), and the relation p A k 6∈ D(m) is computable in D(A)(m).

In addition to forcing, we’ll also use several properties of a family of equiv-

alence relations ∼n between tuples.

Definition 2.1.6. For structures A and B and tuples a ∈ |A| and b ∈ |B|,

recursively define aA ∼n bB for all n as follows.

1. aA ∼0 bB if a and b satisfy the same open formulas, and

2. a ∼n+1 b if for all c ∈ |A|, there is a d ∈ |B| such that a, cA ∼n b, dB, and

for each d ∈ |B|, there is a c ∈ |A| such that a, cA ∼n b, dB.

We say that A ∼n B if ∅A ∼n ∅B.

To get an intuitive understanding of ∼n, fix A and B to be countable linear

orders, and let a ∈ |A| and b ∈ |B|. Then aA ∼0 bB if a and b are ordered in the
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same way, and aA ∼1 bB if a and b are ordered in the same way and partition A

and B into intervals with the same number of elements. Our intuition starts to

fade at the n = 2 level and beyond.

We are now prepared for the gauntlet of lemmas and facts that will yield

the proof of Theorem 2.1.14. We start with the following Σ0
1 versions of Lemmas

1.3 and 1.4 of [23].

Lemma 2.1.7. Suppose that ♦p
AW

D(m)

e = S. Then S ∈ Σ
D(A)(m)

1 .

Proof. Consider the set of tuples of the form (q, k, l, α, β, C), where q ⊇ p, q A

j ∈ D(m) for all j ∈ α, q A j 6∈ D(m) for all j ∈ β, and C is a computation of

ϕXe (k) = l using just the information that α ⊆ X ⊆ N − β. So by Fact 2.1.5,

this set of tuples is c.e. in D(A)(m). Then our hypothesis shows that for each k,

χS(k) = 1 if and only if there will be some tuple (q, k, l, α, β, C).

Lemma 2.1.8. For all m ∈ N and S ⊆ N, the following are equivalent:

(1) S ∈ Σ
D(B)(m)

1 for all B ∼= A.

(2) For some e and some p ∈ F, ♦p
AW

D(m)

e = S.

Proof. Suppose that (1) holds. For a contradiction, assume that for every p and

e, ♦p
AW

D(m)

e = S does not hold. Define a sequence of forcing conditions p0 ⊆ p1 ⊆

· · · such that the resulting model B with p : A→ B does not satisfy S ∈ Σ
D(B)(m)

1 .

Specifically, define this sequence to be m-complete for S(m), interleaved with

conditions that we will now explicitly define. Start with p0 = ∅. Assume that we
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have pe. By hypothesis, ♦pe

A W
D(m)

e = S does not hold. There are two cases. For

the first case, suppose that there exists k ∈ S such that for all q ⊇ pe and l ∈ N,

q 6A ϕD
(m)

e (k) = l. Then let pe+1 = pe, as we already have that k 6∈ WD(B)(m)

e .

For the second case, suppose that there exist k 6∈ S, q ⊇ pe, and l ∈ N such that

q A ϕ
D(m)

e (k) = l. Then let pe+1 = q and we have now forced that k ∈ WD(B)(m)

e .

Next suppose that (2) holds. By Lemma 2.1.7, S ∈ Σ
D(A)(m)

1 . Suppose

A ∼=f B. If p takes a to k, let q take f(a) to k. Then ♦q
BW

D(m)

e = S, and by

Lemma 2.1.7, S ∈ Σ
D(B)(m)

1 .

The next fact comes directly from [23].

Fact 2.1.9 (Lemma 2.2 of Knight [23]). Let a ∈ A and b ∈ B. Suppose p(a) =

q(b) = k. If aA ∼n bB, then p A ϕ
D(n)

e (k) = l iff q B ϕD
(n)

e (k) = l.

Now we have the following analogue to Lemma 2.3 of [23].

Lemma 2.1.10. Let a ∈ |A| and b ∈ |B|. Suppose p(a) = q(b) = k. If aA ∼n+1

bB, then ♦p
AW

D(n)

e = S iff ♦q
BW

D(n)

e = S.

Proof. Suppose that aA ∼n+1 bB, and let

PA = {k | (∃p′ ⊇ p)(∃l)p′ A ϕ
D(n)

e (k) = l};

PB = {k | (∃q′ ⊇ q)(∃l)q′ B ϕD
(n)

e (k) = l}.

Since p(a) = q(b) = k and aA ∼n+1 bB, we have that for every p′ ⊇ p, there is a

q′ ⊇ q such dom(p′)A ∼n dom(q′)B, and for every q′ ⊇ q, there is a p′ ⊇ p such
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that dom(p′)A ∼n dom(q′)B. Therefore, Fact 2.1.9 shows that for any k, (∃p′ ⊇

p)(∃l)p A ϕ
D(n)

e (k) = l iff (∃q′ ⊇ q)(∃l)q′ B ϕD
(n)

e (k) = l. So PA = PB.

The following are the final two facts we need before proving Theorem 2.1.14.

To state the first fact, we define the following terminology.

Definition 2.1.11. A linear order A has the ∼n-property if there is a computable

linear order B such that A ∼n B.

Fact 2.1.12 (Lemma 3.4 of Knight [23]). Every linear order has the ∼2-property.

Fact 2.1.13 (Lemma 3.2 of Knight [23]). Let a ∈ |A| and b ∈ |B|. Let Ii and Ji be

the intervals in A and B, respectively, such that A = I0+{a1}+I1+· · ·+{an}+In

and B = J0 + {b1} + J1 + · · · + {bn} + Jn. Then aA ∼n bB iff Ii ∼n Ji for all

i = 0, . . . , n.

Theorem 2.1.14. If A is a linear order and S ⊆ N such that S ∈ Σ
D(B)′

1 for all

B ∼= A, then S ∈ Σ0
2.

Proof. Let A and S be as in the hypothesis. By Lemma 2.1.8, there is a p ∈ F such

that ♦p
AW

D′
e = S. Let dom(p) consist of a0 < · · · < an−1. For 0 < i < n, let Ii be

the interval (ai−1, ai). Let I0 be (−∞, a0) if a0 is not the first element of A, and ∅

otherwise; and let In be (an,∞) if an is not the last element of A and ∅ otherwise.

There are computable orderings Ji such that Ji ∼2 Ii, by Fact 2.1.12. Replacing

each Ii by Ji produces a computable ordering B such that dom(p)B ∼2 dom(p)A.

(This uses Fact 2.1.13.) Then ♦p
BW

D′
e = S, and S ∈ Σ

D(B)′

1 = Σ0
2.
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2.2 Finite-component graphs

In order to separate the degree spectra of linear orders and other structures in

the sense of the statement, “There is a linear order whose degree spectrum is

not that of any (name of other structure here) ,” we can now apply Theorem 2.1.14 to

different types of structures. Although the author now views finite-component

graphs as merely an application of Theorem 2.1.14, the question of separating the

degree spectra of linear orders and finite-component graphs was really one of the

catalysts for this entire dissertation.

Now, using the definition of a countable finite-component graph from Section

1.2, note that the set

SG = {(C, n) | C is a component of G occurring at least n times}

is clearly an isomorphic invariant of G (i.e., if B ∼= G, then SB = SG). The follow-

ing two properties of finite-component graphs will yield our desired application.

Lemma 2.2.1. Let G be a finite-component graph. Then SG ∈ Σ
D(G)′

1 .

Proof. Let D(G)′ enumerate SG: At every stage s, print out (C, n) if there is a

connected subgraph C of Gs (i.e., the graph determined by D(G)s) that occurs n

times and that has stopped growing (a condition that D(G)′ can correctly test)

in each of those occurrences.

Lemma 2.2.2. If G is a finite-component graph, X ⊆ N, and SG ∈ ΣX
1 , then

there is a B ∼= G such that D(B) ≤T X.
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Proof. Build B by adding components as X enumerates them into SG.

Now we have the following corollary of Theorem 2.1.14. Note, we say that

a degree d computes a structure A if deg(A) ≤ d.

Theorem 2.2.3. If A is a linear order and G is a finite-component graph such

that DgSp(A) ⊆ DgSp(G), then 0′ computes a copy of G (and so {d | d ≥ 0′} ⊆

DgSp(G)).

Proof. Let A and G be as in the hypothesis. Fix a copy B of A. Let Ĝ ∼= G such

that D(Ĝ) ≤T D(B). Then by Lemma 2.2.1, SG = SĜ ∈ Σ
D(Ĝ)′

1 ⊆ Σ
D(B)′

1 . So by

Theorem 2.1.14, SG ∈ Σ∅
′

1 . Thus Lemma 2.2.2 says there is a G̃ ∼= G such that

D(G̃) ≤T ∅′, so 0′ computes a copy of G. Since degree spectra are closed upward,

{d | d ≥ 0′} ⊆ DgSp(G).

Finally, the following lemma on linear orders gives us the desired degree

spectrum separation from finite-component graphs.

Lemma 2.2.4. For any degree d, there is a linear order L such that d cannot

compute a copy of L.

Proof. Fix d, and for some D ∈ d, let X = D(4) such that 0 6∈ X, without loss of

generality. Write X = {x0 < x1 < x2 < · · · }. Define ζ(X) to be the linear order:

Z + x0 + Z + x1 + Z + x2 + · · ·
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For a linear order L, let SuccL and BlL denote the successivity and block relation

for L (where a successivity is a point paired with its successor and a block is a

string of successive points where the first point has no predecessor and the last

point has no successor). Then for all a1, . . . , an ∈ |L|,

SuccL(a1, a2) ⇐⇒ a1 <L a2 ∧ (¬∃c)[a1 <L c <L a2];

BlL(a1, . . . , an) ⇐⇒ (∀b)¬ SuccL(b, a1) ∧ (∀b)¬ SuccL(an, b) ∧
∧
i<j

SuccL(ai, aj).

Let L̂ ∼= ζ(X). Then, for all n ≥ 1,

n ∈ X ⇐⇒ (∃a1, . . . , an) Blζ(X)(a1, . . . , an)

⇐⇒ (∃a1, . . . , an) BlL̂(a1, . . . , an).

Then X ∈ Σ
D(L̂)
3 , so X ≤T D(L̂)′′′. Clearly deg(L̂) 6≤ d. Therefore, d cannot

compute a copy of L = ζ(X).

Theorem 2.2.5. There is a linear order L such that DgSp(L) 6= DgSp(G) for

any finite-component graph G.

Proof. From Lemma 2.2.4, let L be a linear order such that 0′ cannot compute a

copy of L. For a contradiction, assume that DgSp(L) = DgSp(G) for some finite-

component graph G. Then by Theorem 2.2.3, d ∈ DgSp(G) for some d ≤ 0′. So

d ∈ DgSp(L), and 0′ computes a copy of L.
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2.3 Equivalence structures

For an equivalence structure E, let

SE = {(n,m) | E has at least m many classes of size exactly n}.

Again, if E ∼= F, then SE = SF. Also, the isomorphism type of E is determined by

SE together with the number of infinite equivalence classes. To obtain the same

result as we did for finite-component graphs now for equivalence structures, we

show the following two analogous lemmas.

Lemma 2.3.1. If E is an equivalence structure, then SE ∈ Σ
D(E)′

1 .

Proof. LetD(E)′ enumerateD(E). At stage s, print out (n,m) if there aremmany

equivalence classes of size n in Es (i.e., the equivalence structure determined by

D(E)s), each of which has stopped growing (a condition that D(E)′ can correctly

test). Notice that nothing will be printed in the case of an infinite equivalence

class of E, since they never stop growing.

Lemma 2.3.2. If E is an equivalence structure, X ⊆ N, and SE ∈ ΣX
1 , then there

is an F ∼= E such that D(F) ≤T X.

Proof. Build F by adding equivalence classes as X enumerates them into SE. Also,

nonuniformly add infinite classes to F so that E and F have the same number of

infinite equivalence classes.
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Then by the exact same reasoning as in the proofs of Theorems 2.2.3 and

2.2.5, we have the following two theorems.

Theorem 2.3.3. If A is a linear order and E is an equivalence structure such

that DgSp(A) ⊆ DgSp(E), then 0′ computes a copy of E (and so {d | d ≥ 0′} ⊆

DgSp(E)).

Proof. Let A and E be as in the hypothesis. Fix a copy B of A. Let Ê ∼= E such

that D(Ê) ≤T D(B). Then by Lemma 2.3.1, SE = SÊ ∈ Σ
D(Ê)′

1 ⊆ Σ
D(B)′

1 . So by

Theorem 2.1.14, SE ∈ Σ∅
′

1 . Thus Lemma 2.3.2 says there is an Ẽ ∼= E such that

D(Ẽ) ≤T ∅′, so 0′ computes a copy of E.

Theorem 2.3.4. There is a linear order L such that DgSp(L) 6= DgSp(E) for

any equivalence structure E.

Proof. From Lemma 2.2.4, let L be a linear order such that 0′ cannot compute

a copy of L. For a contradiction, assume that DgSp(L) = DgSp(E) for some

equivalence structure E. Then by Theorem 2.3.3, d ∈ DgSp(E) for some d ≤ 0′.

So d ∈ DgSp(L), and 0′ computes a copy of L.

2.4 Rank-1 torsion-free abelian groups

We can also obtain the desired separation of degree spectra in the case of lin-

ear orders vs. rank-1 torsion-free abelian groups. First, note that we have the

following analogue of Theorem 2.1.14.
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Theorem 2.4.1. If A is a linear order and S ⊆ N such that S ∈ Σ
D(B)
1 for all

B ∼= A, then S ∈ Σ0
1.

The proof is the same as that of Theorem 2.1.14 presented in Section 2.1

without the jump. Recall the definition of a rank-1 torsion-free abelian group from

Section 1.2. We now define the standard type of any subgroup of Q as in Coles,

Downey, and Slaman [7]. This will play the role of the set S in the lemmas to

come.

Definition 2.4.2. Let p1 < p2 < . . . be the primes, and let G be a subgroup of

Q.

(1) For a prime p, the p-height hp(a) of an a ∈ |G|, a 6= 0G, is

hp(a) =


k, if k is greatest such that pk|a in G,

∞, if pk|a for all k.

(2) The characteristic of a is the sequence

χ(a) = (hp1(a), hp2(a), hp3(a), . . .).

(3) The standard type S(G) of G relative to a fixed a ∈ |G|, a 6= 0G, is

S(G) = {(i, j) | (∃g)(pjig = a)}.

Now we have the two lemmas for rank-1 torsion-free abelian groups which

are the analogues of Lemmas 2.2.1 and 2.2.2 for finite-component graphs and

Lemmas 2.3.1 and 2.3.2 for equivalence structures.
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Lemma 2.4.3. If G is a rank-1 torsion-free abelian group, then S(G) ∈ Σ
D(B)
1

for all B ∼= G.

Proof. Nonuniformly fix a b ∈ |B| that corresponds to a ∈ |G|. Then

S(G) = {(i, j) | (∃g ∈ |B|)(pjig = b)}

is clearly Σ
D(B)
1 .

See the proof of Theorem 17 in [7] for the proof of this second lemma.

Lemma 2.4.4. If G is a rank-1 torsion-free abelian group, X ⊆ N, and S(G) ∈

ΣX
1 , then there is a B ∼= G such that D(B) ≤T X.

By reasoning familiar now from the cases of finite-component graphs and

equivalence structures, we have the following two theorems.

Theorem 2.4.5. If A is a linear order and G is a rank-1 torsion-free abelian

group such that DgSp(A) ⊆ DgSp(G), then 0 computes a copy of G (and so

D = DgSp(G)).

Proof. Let A and G be as in the hypothesis. Fix a copy B of A. Let Ĝ ∼= G such

that D(Ĝ) ≤T D(B). Then by Lemma 2.4.3, SG = SĜ ∈ Σ
D(Ĝ)
1 ⊆ Σ

D(B)
1 . So

by Theorem 2.4.1, SG ∈ Σ0
1. Thus Lemma 2.4.4 says there is a G̃ ∼= G such that

D(G̃) ≤T ∅, so 0 computes a copy of G.

Theorem 2.4.6. There is a linear order L such that DgSp(L) 6= DgSp(G) for

any rank-1 torsion-free abelian group G. In fact, the only spectrum that can be
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the spectrum of both a linear order and a rank-1 torsion-free abelian group is the

trivial spectrum (i.e., the spectrum of a computable structure).

Proof. From Lemma 2.2.4, let L be a linear order such that 0 cannot compute

a copy of L. For a contradiction, assume that DgSp(L) = DgSp(G) for some

rank-1 torsion-free abelian group G. Then by Theorem 2.4.5, 0 ∈ DgSp(G). So

0 ∈ DgSp(L), and 0 computes a copy of L.



Chapter 3

Families of sets

In this chapter, we perform the same analysis on degree spectra of structures as

we did in Chapter 2, only now we work with enumerations of countable families

of sets instead of enumerations of countable sets. This will add to our list of

examples—in the sense of Chapter 2, we can separate the degree spectrum of

linear orders from that of finite-component graphs, equivalence structures, rank-1

torsion-free abelian groups, and now daisy graphs, as presented in Section 3.2.

To see exactly how the methods of this chapter will extend those of Chapter

2, notice later that within the proof of our main separation of degree spectra result,

Theorem 3.2.9, we prove the family-of-sets analogue to Theorem 2.1.14. That is,

we prove that if S is a countable family of sets and if L is a linear order such

that L has the ∼3-property and such that for every B ∼= L, S has an enumeration

νB ∈ Σ
D(B)
1 , then S has an enumeration ν ∈ Σ∅

′′

1 .

32
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3.1 Extending to enumerations of families of sets

Definition 3.1.1. Let S ⊆ P(N) be a countable family of subsets of N. A

binary relation ν is called an enumeration of S if S = {ν(i) | i ∈ N}, where

ν(i) = {x | (i, x) ∈ ν}.

We use the same forcing setup as in Section 2.1 (where we fix a structure

A and build a generic copy B via a chain of forcing conditions), and we use the

same forcing statements as in Definitions 2.1.2 and 2.1.4. Let W
D(B)(m)

e [n] =

{x | (n, x) ∈ WD(B)(m)

e } denote the n-th column of W
D(B)(m)

e . Add the following

informal forcing statements to our list in Definitions 2.1.2 and 2.1.4. Again, we

use ♦p
A in place of p A when defining a quasi forcing statement.

Definition 3.1.2. Let p A ψ and ♦p
A ψ be defined as follows.

6. ψ is WD(m)

e [n] = X, for some X ⊆ N and some n,m:

♦p
A ψ ⇐⇒ X = {k | (∃r ⊇ p)(∃l)r A ϕ

D(m)

e (n, k) = l}.

p A ψ ⇐⇒ (∀q ⊇ p)♦q
AW

D(m)

e [n] = X.

p A ¬ψ ⇐⇒ there is no q ⊇ p such that q A ψ.

7. ψ is WD(m)

e enumerates S, for some countable S ⊆ P(N) and some m:

♦p
A ψ ⇐⇒ S = {X | (∃n)(∃q ⊇ p)q A W

D(m)

e [n] = X}.

The following three lemmas, where A and B are linear orders and S is a

countable subset of P(N), will yield our degree spectra separation result for daisy
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graphs, Theorem 3.2.9, along with our result linking degree spectra to families of

sets in general, Theorem 3.2.12.

Lemma 3.1.3. If, for all B ∼= A, S has an enumeration c.e. in D(B)(m), then

there are p and e such that ♦p
AW

D(m)

e enumerates S.

Proof. Assume for every p and e, the condition that ♦p
AW

D(m)

e enumerates S fails.

It suffices to show that there is an m-complete sequence (pi)i∈N that determines

a generic copy B of A such that S has no enumeration c.e. in D(B)(m). By our

assumption, the following holds for every p and e:

(∃X ∈ S)(∀n)(∀q ⊇ p)q 6A W
D(m)

e [n] = X (3.1.1)

or

(∃X 6∈ S)(∃n)(∃q ⊇ p)q A W
D(m)

e [n] = X (3.1.2)

Now we can state exactly what requirements need to be met by the sequence

of forcing conditions pe, noting that interleaved with what we are actually doing in

the construction, there are other stages making the sequence m-complete (just as

in the proof of Lemma 2.1.8). For each e, we have a master requirement that needs

to make W
D(B)(m)

e not an enumeration of the family S. This master requirement

will be met in one of two ways. Either it will make sure that there is an X 6∈ S,

a condition pi, and a number n ∈ N such that

pi A W
D(m)

e [n] = X,
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or it will make sure that there is an X ∈ S and an infinite sequence of conditions

pin for n ∈ N such that for each n,

pin A W
D(m)

e [n] 6= X

(so that X is not any column of W
D(B)(m)

e ).

To build (pi)i∈N, let p0 = ∅. Suppose that we have defined pi and that the

next master requirement to meet is for the index e. If (3.1.2) holds, then let pi+1

be a q ⊇ pi such that q A WD(m)

e [n] = X for an n ∈ N and X 6∈ S guaranteed

by (3.1.2). Notice that if (pi)i∈N is m-complete, then each statement of the form

ϕD
(m)

e (n, k)↓ is eventually forced or its negation is forced. If pi+1 A W
D(m)

e [n] =

X, then there cannot be an extension forcing ϕD
(m)

e (n, k)↑ if k ∈ X. So we must

have ϕD
(m)

e (n, k)↓ eventually forced. This action satisfies the master requirement.

Otherwise, suppose that (3.1.1) holds. Fix an X ∈ S such that for every n

and every q ⊇ pi,

(∃q′ ⊇ q)X 6= {k | (∃r ⊇ q′)(∃l)r A ϕ
D(m)

e (n, k) = l}. (3.1.3)

Define infinitely many subrequirements corresponding to the infinite sequence pin .

Let the master requirement dovetail the action of these requirements with the

action of future master requirements.

To meet the subrequirement for n given a current forcing condition pi, con-

sider a q′ ⊇ pi such thatX 6= {k | (∃r ⊇ q′)(∃l)r A ϕ
D(m)

e (n, k) = l} as guaranteed
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by (3.1.3). For such a q′, we have either

(∃k ∈ X)(∀r ⊇ q′)(∀l)r 6A ϕ
D(m)

e (n, k) = l (3.1.4)

or

(∃k 6∈ X)(∃r ⊇ q′)(∃l)r A ϕ
D(m)

e (n, k) = l. (3.1.5)

If (3.1.5) holds, then let pi+1 be an r ⊇ q′ ⊇ pi such that r A ϕD
(m)

e (n, k) = l

for an l ∈ N and k 6∈ X as guaranteed by (3.1.5). If (3.1.4) holds instead, let

pi+1 = q′. Fix k ∈ X such that

(∀r ⊇ pi+1)(∀l)r 6A ϕ
D(m)

e (n, k) = l,

and we have pi+1 A ϕ
D(m)

e (n, k)↑, so because k ∈ X, pi+1 A W
D(m)

e [n] 6= X.

Thus the dovetailed subrequirements get met one by one, and at the end of

the construction, the master requirement is met. So (pi)i∈N determines a generic

B ∼= A such that S has no enumeration c.e. in D(B)(m) as desired.

Lemma 3.1.4. If ♦p
BW

D(m)

e enumerates S, then S has an enumeration c.e. in

D(B)(m+2).

Proof. Suppose that ♦p
BW

D(m)

e enumerates S. Then

S = {X | (∃n)(∃q ⊇ p)q B WD(m)

e [n] = X}.

Now for any set X, q B WD(m)

e [n] = X iff for each k ∈ X,

(∀q′ ⊇ q)(∃r ⊇ q′)(∃l)r B ϕD
(m)

e (n, k) = l (3.1.6)
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and for each k 6∈ X,

(∀r ⊇ q)(∀l)r 6B ϕD
(m)

e (n, k) = l. (3.1.7)

Thus, we can capture the notion of a condition q forcing WD(m)

e [n] being equal to

some set. Indeed, we say

q B WD(m)

e [n] is determined :⇐⇒ (∀k)[(3.1.6) holds ∨ (3.1.7) holds]. (3.1.8)

So to enumerate S, we need to find the conditions q ⊇ p such that q B

WD(m)

e [n] is determined and then enumerate the sets

{k | (∃r ⊇ q)(∃l)r B ϕD
(m)

e (n, k) = l}

for such conditions q. Since (by Fact 2.1.5 and the same reasoning as in Lemma

2.1.7) the relation r B ϕD
(m)

e (n, k) = l is c.e. in D(B)(m), D(B)(m+2) can compute

whether q B WD(m)

e [n] is determined (by the complexity of the definition in

(3.1.8)). Therefore, D(B)(m+2) can enumerate the sets determined by an extension

of p.

Lemma 3.1.5. Let a ∈ |A| and b ∈ |B|. Suppose p(a) = q(b) = k. If ♦p
AW

D(m)

e

enumerates S and aA ∼m+3 bB, then ♦q
BW

D(m)

e enumerates S.

Proof. Suppose that ♦p
AW

D(m)

e enumerates S and aA ∼m+3 bB. Define

PA = {X | (∃n)(∃r ⊇ p)r A W
D(m)

e [n] = X};

PB = {X | (∃n)(∃r ⊇ q)r B WD(m)

e [n] = X}.
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Then S = PA and we wish to prove S = PB, so it suffices to show that PA = PB.

Now, X ∈ PA iff

(∃n)(∃p1 ⊇ p)(∀p2 ⊇ p1)X = {k | (∃r ⊇ p2)(∃l)r A ϕ
D(m)

e (n, k) = l}, (3.1.9)

and X ∈ PB iff

(∃n)(∃q1 ⊇ q)(∀q2 ⊇ q1)X = {k | (∃r′ ⊇ q2)(∃l)r′ B ϕD
(m)

e (n, k) = l}.

Let X ∈ PA, and let n and p1 ⊇ p be as in (3.1.9). Then there is a q1 ⊇ q such

that dom(p1)A ∼m+2 dom(q1). Let q2 ⊇ q1. Then there is a p2 ⊇ p1 such that

dom(p2)A ∼m+1 dom(q2). Therefore,

X = {k | (∃r ⊇ p2)(∃l)r A ϕ
D(m)

e (n, k) = l}

by (3.1.9).

We claim that

X = {k | (∃r′ ⊇ q2)(∃l)r′ B ϕD
(m)

e (n, k) = l}.

On one hand, let k ∈ X. So take r ⊇ p2 such that r A ϕD
(m)

e (n, k) = l for

some l. Then there is an r′ ⊇ q2 such that dom(r)A ∼m dom(r′)B. By Fact

2.1.9, r′ B ϕD
(m)

e (n, k) = l. On the other hand, let k and r′ ⊇ q2 be such that

r′ B ϕD
(m)

e (n, k) = l for some l. Then there is an r ⊇ p2 such that dom(r)A ∼m

dom(r′)B; hence, r A ϕ
D(m)

e (n, k) = l. So k ∈ X.

Therefore, since q2 ⊇ q1 was arbitrary, X ∈ PB. Notice that the same

argument shows that X ∈ PB =⇒ X ∈ PA. Hence PA = PB.
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3.2 Application to Daisy Graphs

We can now show the separation of degree spectra for daisy graphs. We define a

daisy graph of a countable family S of sets in a similar way as in Goncharov, et

al. [17]. We are interested in two kinds of daisy graphs, those that repeat each set

in S infinitely many times and those that mention each set in S only once. We

therefore consider not only enumerations of S, but 1-1 enumerations of S, which

are also defined below.

Definition 3.2.1. Let S ⊆ P(N) be a countable family of sets.

• For each X ∈ S, define G(X) to be the directed graph consisting of one root

node r at the center, with r → r, and for each x ∈ X, a petal of the form

r → x0 → · · · → xn → r.

The petals are disjoint except for the root node, which is common to all.

• Let the repeat daisy graph G∞(S) of S be the union of the disjoint family

of graphs G(X) for X ∈ S, having infinitely many G(X) for each X.

• Let the 1-1 daisy graph G(S) of S be the union of the disjoint family of

graphs G(X) for X ∈ S, having one G(X) for each X.

• We say that G is a daisy graph of S if G is either G∞(S) or G(S).

• µ is a 1-1 enumeration of S if µ is an enumeration of S and for all i 6= j,

µ(i) 6= µ(j).
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As a brief remark on the computational complexity of daisy graphs, be-

fore investigating their degree spectra, there are daisy graphs with all possible

computable dimension. The computable dimension of a computably presentable

structure A is the number of computable presentations of A up to computable

isomorphism. Indeed, Theorem 4.3 of [17] (due to Goncharov) states that for

each n, there is a daisy graph of computable dimension n. Hence daisy graphs

can exhibit complicated behavior, from a computable model theoretic standpoint,

so it is worth noting that they are non-universal.

At the beginning of the chapter we mentioned that in the proof our main

result for repeat daisy graphs, Theorem 3.2.9, we will show that if for every copy

B of a linear order that has the ∼3-property, S has an enumeration νB ∈ Σ
D(B)
1 ,

then S has an enumeration ν ∈ Σ∅
′′

1 . So to obtain a version of Theorem 3.2.9 for

1-1 daisy graphs, we will use this result and then finish the proof by employing

the following lemma.

Lemma 3.2.2. Let S ⊆ P(N) be a countable family of sets, and let ν be an

enumeration of S. If ν ∈ Σ∅
(m)

1 , then there is a 1-1 enumeration µ of S such that

µ ∈ Σ∅
(m+2)

1 . (In fact, µ is computable in ∅(m+2).)

Proof. Suppose that ν ∈ Σ∅
(m)

1 . For i, j ∈ N, we have ν(i) = ν(j) iff

(∀x)(ν(i, x) ⇐⇒ ν(j, x)). (3.2.1)

Since (3.2.1) is Π∅
(m)

2 , ∅(m+2) can compute whether ν(i) = ν(j). Define the 1-1
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enumeration µ by µ(0) = ν(0) and µ(i + 1) = ν(j), where j is least such that

µ(0) 6= ν(j), . . . , µ(i) 6= ν(j).

To obtain the full application to daisy graphs, we will use the following facts

about linear order multiplication and the ∼n relation. For linear orders A and

B, the notation A ·B denotes the replacement of each point of B by a copy of

A. Lemma 3.2.3 follows from an easy induction on n; Lemma 3.2.4 follows from

Lemma 3.2.3, which we show; and Lemma 3.2.5 follows quickly from the definition

of the ∼n-relation.

Lemma 3.2.3. Let A and B be linear orderings. Suppose that a ∈ |Z · A|,

b ∈ |Z ·B|, and |[ai, aj]| = k iff |[bi, bj]| = k. Then

(a/ ≈)A ∼n (b/ ≈)B̂ =⇒ aZ·A ∼n+1 bZ·B,

where we say ci ≈ cj if [ci, cj] is finite.

Lemma 3.2.4. Let n ∈ N. If A and B are linear orders such that A ∼n B, then

for any k ∈ N, Zk · A ∼n+k Zk ·B.

Proof. Notice that by induction, it suffices to show A ∼n B =⇒ Z ·A ∼n+1 Z ·B.

Let a0 ∈ |Z · A|. Pick b0 ∈ |Z ·B| such that (a0/ ≈)A ∼n (b0/ ≈)B and such that

if ai < aj in some Z copy, then bi < bj in some Z copy and |[ai, aj]| = |[bi, bj]|.

Then by Lemma 3.2.3, aZ·A ∼n+1 bZ·B.

Lemma 3.2.5. Let n ∈ N. If A and B are linear orders such that A ∼n B, then

for any linear orders α and β, α + A + β ∼n α + B + β.
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Now, keeping in mind how we obtained the results for finite-component

graphs and our other examples, we have two immediate lemmas for daisy graphs

that lead us to their separation from linear orders with respect to degree spectra.

Notice the third lemma stated is a 1-1 version of Lemma 3.2.7 for the application

to 1-1 daisy graphs.

Lemma 3.2.6. If G is a daisy graph of a countable family S of sets, then S has

an enumeration in Σ
D(G)
1 .

Proof. As we see a petal of size x + 2 appear off of the ith root node of G, put

x into the ith set of the enumeration. Eventually we will list an enumeration of

S.

Lemma 3.2.7. Let G be a repeat daisy graph of a countable family S of sets, and

let X ⊆ N. If S has an enumeration in ΣX
1 , then there is a Ĝ ∼= G such that

D(Ĝ) ≤T X.

Proof. The copy Ĝ of G is the graph built by letting X print out an enumeration

ν of S and putting in the corresponding root nodes and petals as we see new sets

and elements get listed, making sure to repeat each component infinitely many

times to get G∞(S). For X to correctly determine whether two vertices v1, v2

are connected by an edge in Ĝ, print enough of ν to find the petal(s) containing

v1, v2.
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Lemma 3.2.8. Let G be a 1-1 daisy graph of a countable family S of sets, and

let X ⊆ N. If S has a 1-1 enumeration in ΣX
1 , then there is a Ĝ ∼= G such that

D(Ĝ) ≤T X.

The proof of this lemma is the same as Lemma 3.2.7, except we do not copy

each component infinitely many times. Now we can state the separation of degree

spectra first for repeat daisy graphs and then for 1-1 daisy graphs.

Theorem 3.2.9. There is a linear order L such that DgSp(L) 6= DgSp(G) for

any repeat daisy graph G.

Proof. From Lemma 2.2.4, let L be a linear ordering such that L has no 0(4)-copy.

From the iterated and relativized version of Theorem 9.10 in Ash and Knight [2]

(a result originally due to Watnick [32], as is said in [2]), if Zk · L has a 0(n)-copy

for some k and n, then L has a 0(n+2k)-copy. Let A = Z · L. Therefore, in our

case, A has no 0(2) copy. Let S ⊆ P(N) be a countable family of sets, and let

G = G∞(S) be the repeat daisy graph of S.

Assume, for a contradiction, that DgSp(A) = DgSp(G). Then every copy of

A computes a copy of G. Then Lemma 3.2.6 shows that for every Ã ∼= A, S has

an enumeration c.e. in D(Ã). By Lemma 3.1.3, ♦p
AW

D
e enumerates S for some p

and e.

Following the proof of Theorem 2.1.14, let dom(p) consist of a0 < · · · < an−1,

and for 0 ≤ i ≤ n, define the intervals Ii just as we did before. Now associate

to each ai the lj ∈ L that corresponds to the copy of Z containing ai; for each
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lj, give each associated ai a new name: aji . Say the list of lj’s is l1, . . . , lm. For

0 ≤ j ≤ m, define intervals Lj in L just as we defined Ii in Z · L. Notice that, if

defined, I0 = Z · L0 + N∗ and In = N + Z · Lm. Notice also that for 0 < i < n, Ii

takes on one of two forms:

Ii = k,

Ii = N + Z · Lj + N∗.

By Fact 2.1.12, there are computable orderings Ki such that Ki ∼2 Li.

Replacing Li by Ki produces a computable ordering B with new intervals Ji that

replace the Ii. Now by Lemmas 3.2.4 and 3.2.5, α+ Z · Lj + β ∼3 α+ Z ·Kj + β

for any linear orders α and β. Then because the Ji take on one of the forms

J0 = Z · K0 + N∗, Jn = N + Z · Km, Ji = k, and Ji = N + Z · Kj + N∗, we

have Ii ∼3 Ji. Using Fact 2.1.13, dom(p)A ∼3 dom(p)B. So by Lemma 3.1.5,

♦p
BW

D
e enumerates S, so S has an enumeration c.e. in D(B)′′ ≡T ∅′′ by Lemma

3.1.4. Hence G has a 0(2)-copy by Lemma 3.2.7. Since DgSp(A) = DgSp(G), A

has a 0(2)-copy also, a contradiction.

Now by applying Lemma 3.2.2, we obtain the following 1-1 enumeration of

Theorem 3.2.9.

Theorem 3.2.10. There is a linear order L such that DgSp(L) 6= DgSp(G) for

any 1-1 daisy graph G.
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Proof. Follow the exact same proof as Theorem 3.2.9, only begin with a linear

order L with no 0(6)-copy so that A = Z · L has no 0(4)-copy. Also, we let

G = G(S), not G∞(S). Skip then to the end of the proof. Instead of applying

Lemma 3.2.7, say that by Lemma 3.2.2, S has a 1-1 enumeration c.e. in ∅(4). Hence

G has a 0(4)-copy by Lemma 3.2.8. Again, DgSp(A) = DgSp(G), which gives the

contradiction.

Definition 3.2.11. Define the class E of structures as follows.

• For a countable family S ⊆ P(N), let ES be the class of structures A that

satisfy the following conditions.

1. For all Â ∼= A, S has an enumeration in Σ
D(Â)
1 .

2. If S has an enumeration in ΣX
1 for some X ⊆ N, then there is an Â ∼= A

such that D(Â) ≤T X.

• Let

E =
⋃

S⊆P(N) countable

ES.

The exact same arguments used in Theorem 3.2.9 yield the following gener-

alized result (where now in place of Lemmas 3.2.6 and 3.2.7, we invoke conditions

1 and 2 in the definition of ES, respectively).

Theorem 3.2.12. There is a linear order A such that DgSp(A) 6= DgSp(B) for

any B ∈ E.
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