
1



A-Computable Graphs

Matthew Juraa, Oscar Levinb,∗, Tyler Markkanenc

aDepartment of Mathematics, Manhattan College
4513 Manhattan College Parkway

Riverdale, NY 10471, USA
bSchool of Mathematical Sciences, University of Northern Colorado

Greeley, CO 80639, USA
cDepartment of Mathematics, Physics, and Computer Science, Springfield College

263 Alden Street
Springfield, MA 01109, USA

Abstract

We consider locally finite graphs with vertex set N. A graph G is computable

if the edge set is computable and highly computable if the neighborhood func-

tion NG (which given v outputs all of its adjacent vertices) is computable. Let

χ(G) be the chromatic number of G and χc(G) be the computable chromatic

number of G. Bean showed there is a computable graph G with χ(G) = 3

and χc(G) =∞, but if G is highly computable then χc(G) ≤ 2χ(G).

In a computable graph the neighborhood function is ∆0
2. In highly com-

putable graphs it is computable. It is natural to ask what happens be-

tween these extremes. A computable graph G is A-computable if NG ≤T A.

Gasarch and Lee showed that if A is c.e. and not computable then there exists

an A-computable graph G such that χ(G) = 2 but χc(G) =∞. Hence for A

noncomputable and c.e., A-computable graphs behave more like computable

∗Corresponding author
Email addresses: matthew.jura@manhattan.edu (Matthew Jura),

oscar.levin@unco.edu (Oscar Levin), tmarkkanen@springfieldcollege.edu (Tyler
Markkanen)

Preprint submitted to Annals of Pure and Applied Logic November 2, 2015



graphs than highly computable graphs. We prove analogous results for Euler

paths and domatic partitions. Gasarch and Lee left open what happens for

other ∆0
2 sets A. We show that there exists an ∅ <T A <T ∅′ such that every

A-computable graph G with χ(G) <∞ has χc(G) <∞. Finally, we classify

all such A.

Keywords: computability theory, Euler paths, chromatic number, highly

computable graphs

2010 MSC: 03D25, 03D28, 03D45

1. Introduction

When applying notions in computability theory to results in graph theory,

we often find that classical results are not effectively true. Two early exam-

ples of this phenomenon are due to Bean: there is a computable graph with

an Euler path but no computable Euler path [2], and there is a computable

graph with chromatic number 3 but no computable finite coloring [1] (in fact

there is a computable graph with chromatic number 2 with no computable

finite coloring if you don’t require the graph to be connected [13]). Results of

this flavor abound including ones for Hamilton paths [5], perfect matchings

[8], edge colorings [7], and domatic partitions [6].

Some of these results (including the original two of Bean) rely heavily

on our ability to add neighbors to a given vertex in the construction of the

graphs. A computable graph is simply a graph for which the edge relation

is computable (here and throughout the paper we assume without loss of

generality that computable graphs have vertex set N). Thus there is an

effective procedure to decide whether two given vertices are in fact adjacent.

3



However, we cannot in general produce the list of all vertices adjacent to

a given vertex (or equivalently, determine the degree or valency of a given

vertex). Those computable graphs which have a computable neighborhood

function, which, when given a vertex, outputs the list of all vertices adjacent

to it (i.e., its neighbors), are called highly computable. For this definition to

make sense, all vertices must have only finitely many neighbors (such graphs

are called locally finite), and in this paper we will only consider such graphs.

Whenever a construction of a graph requires adding neighbors to vertices

arbitrarily late in the construction, we wonder whether this requirement is

necessary. Often it is, in that the result that holds for computable graphs

fails to hold for highly computable graphs. Indeed, every highly computable

graph with chromatic number n has a computable (2n− 1)-coloring (proved

independently by Schmerl [13] and Carstens and Päppinghaus [3]; Schmerl

proved this bound is tight). Similarly, every highly computable graph con-

taining an Euler path has a computable Euler path [2].

The goal of this paper is to better understand this behavior by investigat-

ing graphs that are between computable and highly computable. We adopt

the approach suggested by Gasarch and Lee [4] and consider A-computable

graphs1 for various ∆0
2 sets A, meaning A computes the neighborhood func-

tion. We denote the neighborhood function of G by NG. Specifically, given a

vertex v of G, NG(v) returns the canonical index for the finite set of vertices

that are adjacent to v in G.

Definition 1.1 (Gasarch and Lee). Let A be a set. A locally finite graph

1Gasarch and Lee used the term A-recursive to denote the same concept.

4



G = (V,E) is A-computable provided G is computable and NG ≤T A.

Note that computable graphs always have a neighborhood function com-

putable from the halting problem K, so they are K-computable, while highly

computable graphs have computable neighborhood function, making them ∅-

computable.

Since A-computable graphs might be somewhere between computable and

highly computable, it is reasonable to wonder whether the complexity of

graph-theoretic properties of A-computable graphs might be between those

of computable and highly computable graphs. Gasarch and Lee considered

this question for vertex colorings and found that at least for noncomputable

c.e. sets A, the A-computable graphs behave just like the computable ones.

The following is the main result of their paper.

Theorem 1.2 (Gasarch and Lee [4]). Let A be a noncomputable c.e. set.

There exists an A-computable graph G such that G is 2-colorable but not

computably k-colorable for any natural number k.

The authors employed the technique of c.e.-permitting in their construc-

tion. They asked:

Question 1.3. Can Theorem 1.2 be extended to any set A with ∅ <T A <T

∅′?

They remarked that the construction would be more difficult without per-

mitting, and suggested that it might be easier first to consider the case when

A is 2-c.e. Indeed, there is a version of permitting with ∆0
2 sets, aptly called

∆0
2-permitting. (See [9] for a nice exposition of this method.) Unfortunately,

5



the method of ∆0
2-permitting does not seem to apply when constructing an

A-computable graph. The reason is that, while the neighborhood function

of an A-computable graph is necessarily ∆0
2, we cannot remove an edge from

an A-computable graph once one has been enumerated; after all, the graph

(and therefore the edge relation) needs to be computable. One would need

to be able to “undo” any change made to the neighborhood of any given

vertex in the graph in order to be able to use ∆0
2-permitting, because the

set A might give permission to make a change to the neighborhood function,

and then later withdraw that permission because an element leaves A in the

computable approximation being used (which is what would require us to

remove edges).

Our main result is to answer Question 1.3 in the negative. In fact, we

show that there exists a set ∅ <T A ≤T ∅′ such that every A-computable

graph is highly computable. We define such sets to be low for graph neigh-

borhood. Further we show that for any ∆0
2 set A, either the set is low for

graph neighborhood or there is an A-computable graph which is 2-colorable

but not computably k-colorable for any k. Thus, so far as vertex coloring

goes, A-computable graphs are never strictly between computable and highly

computable.

Before building our set A, we start in Section 2 by applying the c.e.-

permitting argument of Gasarch and Lee to the question of computable Euler

paths and domatic partitions. Then in Section 3 we construct a ∆0
2 set A

for which every A-computable graph with finite chromatic number has finite

computable chromatic number. We say how to modify our construction to

build sets which are low for graph neighborhood allowing our result to extend

6



to the functions on graphs considered in Section 2. Finally, in Section 4 we

establish that there are no ∆0
2 sets A for which A-computable graphs act

any differently than either computable or highly computable graphs, at least

with respect to the graph functions considered.

2. A-Computable Graphs and C.E.-Permitting

To familiarize ourselves with A-computable graphs, we present a modifi-

cation of the c.e.-permitting construction used by Gasarch and Lee, applied

to Euler paths instead of coloring. Recall an Euler path is simply a sequence

of vertices v0, v1, . . . such that for all i ∈ N, {vi, vi+1} is an edge in the

graph and every edge in the graph appears (as consecutive vertices in the

sequence) exactly once.2 A computable Euler path is a computable function

f satisfying f(n) = vn for all n ∈ N. In [2], Bean proved that there is a

computable graph with an Euler path but no computable Euler path, and

that every highly computable graph with an Euler path has a computable

Euler path. As in the case for coloring, if A is a noncomputable c.e. set, then

A-computable graphs behave as computable graphs do.

Theorem 2.1. For any noncomputable c.e. set A, there exists an A-computable

graph which has a one-way Euler path but no computable one-way Euler path.

Proof. Fix a computable enumeration As of A with As+1 \ As = {as}. We

build G in stages; at stage s we will have Gs = (Vs, Es) and then will possibly

add some vertices and edges to form Gs+1 ⊇ Gs. We will have G =
⋃
sGs

2When we speak of Euler paths, we mean one-way Euler paths. Results for two-way

Euler paths can be found analogously

7



with V =
⋃
s Vs = N. By the construction, G will be A-computable. When

complete, G will consist of an infinite one-way path made up of the even

vertices, together with “triangles” coming off of some of the even vertices

consisting of the odd vertices. See Figure 1 for one possible start of the

graph.

0 2 4 6 8 10 12

Figure 1: A possible beginning of the graph G. The unlabeled vertices of triangles are

each some odd number.

We diagonalize against each ϕe by satisfying for all e the requirement

Re: ϕe is not a one-way Euler path.

To accomplish this, partition the even natural numbers into infinitely

many infinite sets T0, T1, . . .. Until the requirement Re is satisfied, it will

work on the set Te of even numbers by looking for the vertex enumerated

by ϕe directly after v is enumerated for the first time, for each v ∈ Te.

Specifically, we wait until a stage s by which we find the least kv such that

ϕe(kv) = v (by searching) and ϕe(kv + 1) = v + 2. If this ever happens,

we say that Re needs attention on v at stage s.3 If in addition as ≤ v, we

say that Re deserves attention on v at stage s. The idea is that A grants

3At this point in Bean’s original construction, we would enumerate the triangle adjacent

to v thus satisfying Re.

8



permission to give attention to Re by enumerating a small element (relative

to v) into A.

Construction: At stage s = 0, define G0 by setting V0 = {0} and E0 = ∅.

Wait for a0 to appear in A.

At stage s > 0, begin by setting V ′s = Vs−1 ∪ {2s} and E ′s = Es ∪ {{2s−

2, 2s}}. Wait for as to appear in A. At the same time, run the procedure

outlined above to decide if any unsatisfied Re (with e ≤ s) needs attention at

stage s. If any do, decide whether the vertex on which they need attention

is greater than as. That is, decide whether any of the requirements that

need attention actually deserve attention. For each requirement Re that

needs and deserves attention on (say) ve at stage s, set Vs+1 = V ′s ∪ {ie, je}

and Es+1 = Es ∪ {{ve, ie}, {ie, je}, {je, ve}}, where the ie, je are the least

odd numbers not already in Vs. Declare all Re for which this process was

completed as satisfied.

This ends the construction.

Verification: By the construction, G is computable and has an Euler path.

We must check that G is in fact A-computable and that each Re is satisfied.

Here is how A can compute NG. We need only concern ourselves with

even vertices, as the neighbors of odd vertices are determined completely

when they first appear in the construction (so NG(v) is computable for all

odd v). To find the neighbors of v for v even, we run the enumeration of

A until a stage s for which As � v = A � v. Now run the construction of G

through stage s. We have NGs(v) = NG(v), since the only way to add a new

neighbor of v is for a requirement to deserve attention on v at some stage t.

But after stage s this can never happen, because nothing enters A below v

9



after stage s. Therefore G is A-computable.

Finally we argue that eachRe is satisfied. (Some will be declared satisfied

during the construction, others in the limit because ϕe is not total or doesn’t

even enumerate a path, etc.) Suppose this was not the case. Then for some

e, each v ∈ Te is enumerated by ϕe for the first time immediately before

it enumerates v + 2. As soon as we see ϕe enumerate v + 2 after v, the

requirement Re needs attention. However, we will never add the “triangle”

at v, since ϕe is an Euler path by assumption. This means that Re will never

deserve attention on v at a later stage. That is, nothing below v will enter A

at a later stage. But this means we can compute A: to decide whether n ∈ A,

we run the construction above until a stage s at which Re requires attention

on some v > n with v ∈ Te. At this stage we know that As �v = A�v (else at

a later stage Re would deserve attention on v), so we simply check whether

n ∈ As. This is a contradiction, as we assumed that A is noncomputable.

This completes the verification and the proof.

Using a similar c.e.-permitting technique (and a construction closer to

that used by Gasarch and Lee [4] to prove Theorem 1.2), we can prove an

analogous result for domatic partitions. A domatic k-partition of a graph G

is a partition of the vertices into k dominating sets, where a set is dominating

if every vertex not in the set is adjacent to a vertex in the set. For each k ≥ 3

there is a computable graph with a domatic k-partition but no computable

domatic 3-partition [6]. This results extends to A-computable graphs.

Theorem 2.2. Let k ≥ 3. For any noncomputable c.e. set A, there is an

A-computable graph G = (V,E) such that G has a domatic k-partition, but

no computable domatic 3-partition.

10



Proof sketch. The construction for computable graphs diagonalizes against

all ϕe using a single copy of K3(k−2)+1 (the complete graph on 3(k − 2) + 1

vertices) targeted for each ϕe. We wait for ϕe to provide a domatic 3-partition

on its gadget, at which point we find at least k − 1 vertices partitioned

identically (by the pigeon hole principle) and add a new vertex adjacent to

all of these. This allows for the augmented gadget to still have a domatic

k-partition, but makes ϕe’s partition incorrect.

For the A-computable case being considered here, we use the same diag-

onalization gadgets, but this time have infinitely many gadgets targeted for

each ϕe. We run ϕe on all of its gadgets, but only act (add a vertex) when

A gives us permission by enumerating an element into A smaller than the

largest vertex in the gadget.

By waiting for A to enumerate a small (relative to the vertices in the

gadget) element, we ensure that the graph is A-computable: A tells us when

it is done enumerating below the vertices of a gadget, at which point we know

the vertices will gain no new neighbors.

By giving ϕe infinitely many opportunities to diagonalize, we ensure that

at least one gadget will accomplish this task. For if none did, we could

compute A (a contradiction) by waiting for ϕe to require attention at larger

and larger vertices.

In the introduction, we mentioned that there are computable graphs with

Hamilton paths but no computable Hamilton path. Not surprisingly, this

extends to A-computable graphs as above.

Proposition 2.3. For any noncomputable c.e. set A, there is an A-computable

11



graph G such that G has a one-way Hamilton path, but no computable one-

way Hamilton path.

We omit the proof, as it is so similar to the proofs above. In fact, this

result is trivial since there exist highly computable graphs with Hamilton

paths but no computable Hamilton path [2] and every highly computable

graph is A-computable for all ∆0
2 sets A. However, the construction for highly

computable graphs is considerably more complicated than the construction

for computable graphs. It is possible to take the simpler graph-theoretic

mechanism used to diagonalize in the computable graph case and apply it to

the A-computable case within the c.e.-permitting framework.

There is no reason to think the same basic argument wouldn’t work for

other graph-theoretic properties. The key step seems to be the ability to

replicate the diagonalization infinitely often, so that instead of finding one

witness for each ϕe, we can potentially find infinitely many (by using the fact

that the set is unbounded). This allows for the contradiction argument in

the verification that if there were some ϕe that did the right thing, we could

compute A. A subtle difference between the two constructions outlined above

is worth pointing out. For Euler paths, the vertices of the graph were the

range of ϕe, while for domatic partitions, the vertices were the domain. The

condition by which A grants permission to defeat ϕe is always that a small

element enters A relative to the vertices, be they in the domain or range. This

is necessary for the sake of ensuring that the graph is actually A-computable.

All of this is to say that it appears we get results of the form, “For any

noncomputable c.e. set A, there is an A-computable graph G such that G

has a but no computable ,” no matter what graph-theoretic

12



relation we put in both blanks. All that is required is that the corresponding

result for computable graphs holds. So we end this section with a somewhat

abstract and, admittedly, informal conjecture.

Conjecture 2.4. Let P be the set of properties of a given kind of graph-

theoretic relation. For any relation R, we say that R is a P -relation if R

satisfies all the properties in P . If R is also computable, we call it a com-

putable P -relation. If there exists a computable graph that has a P -relation

but no computable P -relation, then for every noncomputable c.e. set A, there

is an A-computable graph that has a P -relation but no computable P -relation.

We leave as an open problem how to make this conjecture rigorous, and

to prove it is true.

3. Constructing a Counterexample

We now return to Question 1.3. In order to answer this question in

the negative, we build a noncomputable ∆0
2 set A with the property that

any A-computable graph that is n-colorable has finite computable chromatic

number. In our construction, we will use a coloring procedure similar to the

one used in the following theorem due independently to Schmerl [13] and

Carstens and Päppinghaus [3].

Theorem 3.1. If G is highly computable and n-colorable, then G is com-

putably (2n− 1)-colorable.

A proof of the above theorem uses a coloring procedure that alternates

between two sets of colors: {1, . . . , n−1} and {n+1, . . . , 2n−1}. The color n

is then used as a kind of buffer between the two sets. In our construction, it

13



simplifies matters to dispense with the buffer and merely alternate between

two sets of colors that are side by side. This increases the computable chro-

matic number χc by 1 (i.e., from 2n− 1 to 2n), but since there will be other

parts of the construction that increase χc, potentially beyond this, we might

as well accept this loss of efficiency. Indeed, in our construction there will be

no bound on the finite number of colors needed for the computable coloring,

but for each graph with finite chromatic number, the computable chromatic

number will be finite.

Theorem 3.2. There exists a noncomputable ∆0
2 set A such that every A-

computable graph with finite chromatic number has finite computable chro-

matic number.

Before beginning the proof, here is the main idea of the construction. As

we build A, we use our approximation as an oracle to compute the neighbor-

hood function for the graph we attempt to color. If this oracle computation

is always “correct,” then we are essentially coloring a highly computable

graph and can do so as in the proof of Theorem 3.1. Of course, since A

will change (as we diagonalize to ensure A is not computable), there will be

instances where we find a vertex adjacent to earlier vertices we have already

colored. If this happens only finitely often, we can just use a finite number

of new colors to take care of these vertices (but this might add an arbitrar-

ily large finite number of colors). Alternatively, we realize that these new

vertices are only problematic because A previously claimed that they were

not neighbors of earlier vertices. If we can fix A in this previous “incorrect”

state, then we will no longer need to produce a computable coloring, because

the graph will no longer be A-computable. Our proof only involves finite

14



injury. After all higher priority requirements have acted for the last time,

we will either change A back once more and be done (since the graph will

not be A-computable) or never change A and actually produce an acceptable

coloring.

In the proof, we will use two sorts of colorings. The alternating coloring

alternatively uses the colors {1, . . . , n} and {n + 1, . . . , 2n} to color finite

subgraphs (which is possible by searching, if the graph has chromatic number

n). This will be used as long as A is “correctly” computing the neighborhood

function. When we find A in error, we use an online coloring, which simply

assigns to a vertex the least color greater than 2n not among the vertex’s

already colored neighbors.

Proof of Theorem 3.2. We build the set A while diagonalizing against all

partial computable functions ϕe to ensure that A is not computable, but

build A so that it will be ∆0
2 (by ensuring that A is limit computable). At

the same time, for each partial computable function ψi, if it looks like G = ψi

is an n-colorable computable graph, and for each Turing functional ΦA
e , if it

looks like ΦA
e gives the neighborhood function on G, we attempt to give a

computable finite proper coloring of the graph, or to ensure that A is such

that ΦA
e is wrong about the neighbors of at least one vertex of G.

Construction. We satisfy the following requirements, for all e and i:

Pe: A 6= ϕe

R〈e,i,n〉: If G = ψi is an n-colorable A-computable graph with neigh-

borhood function ΦA
e , then there is a computable proper finite

coloring ∆ of G.

Effectively arrange the requirements in a priority listing P0 ≺ R0 ≺ P1 ≺

15



· · · , alternating between the two types. (This gives the priority ordering type

ω.) The lower the requirement is in the ordering, the higher its priority.

Strategy for Pe. Pick a large (above any restraint on A) unused witness

x, targeted for A, and wait for ϕe(x)↓ = 0. If this ever occurs, enumerate x

into A, place restraint on A up to x and cease work on the strategy, unless

the requirement is injured. The requirement can be injured by higher priority

requirements in two ways. Either a higher priority Rj removes x after A has

enumerated it into A or, at the point that ϕe(x)↓, we discover that a higher

priority requirement has already placed restraint on A above x. In either

case, we restart the strategy for Pe using a new large unused witness.

Strategy for R〈e,i,n〉. We attempt to satisfy R〈e,i,n〉 either by producing a

finite coloring or by changing A so that ψi is not A-computable via ΦA
e . We

describe the strategy in terms of stages, but note that each of these stages

might span several stages in the overall construction of A. In what follows,

we will use t to denote the stage of the strategy, and s to denote the stage

of the overall construction.

Define Vt to be the set of vertices mentioned by the end of stage t − 1

in the strategy. Initially V0 = ∅. To ensure that all vertices are eventually

investigated, we insist that {0, . . . , t} ⊆ Vt (by adding t to Vt at the start of

stage t if necessary). We also define for each v ∈ Vt the set

Nt,s(v) = {u ∈ Vt ∪ ΦAs
e (v) : {u, v} ∈ ψi}

as long as ΦAs
e (v)↓ and ψi(u, v)↓ for all u (otherwise leave the set undefined).

In other words, Nt,s(v) is the approximation of the set of neighbors of v at

stage t of the strategy and stage s of the construction. We include u ∈ ΦAs
e (v)

since these vertices are not necessarily in Vt (although they will be in Vt+1)

16



but are being reported as neighbors by the approximation of A. Note that

Nt,s(v) ⊆ Nψi
(v) (the true neighbors of v in the graph ψi) but we might have

Nt,s(v) 6= ΦAs
e (v).

At stage t ≥ 0 of the strategy, we begin by adding t to Vt (if not already

present) and then proceed to compute Nt,s(v) for each v ∈ Vt. This compu-

tation might span multiple values of s, and we continue until some stage s′

at which Nt,s′(v) is computed for all v ∈ Vt. Let Ut be the set of vertices in

Vt ∪
⋃
v∈Vt Nt,s′(v) which are currently uncolored by ∆. There are two cases.

1. It is possible to apply the alternating coloring to properly color the

vertices of Ut. Specifically we can use either colors {1, . . . , n} or colors

{n+ 1, . . . 2n} (whichever set we did not use the last stage we were in

this case) to color all vertices in Ut so that Vt ∪ Ut is properly colored

(with no adjacent vertices colored identically). In this case, apply the

alternating coloring. Set Vt+1 = Vt ∪ Ut and move to stage t+ 1.

2. It is not possible to apply the alternating coloring. This might be

because we have found a finite subgraph which is not n-colorable, in

which case our requirement is automatically satisfied. Otherwise, this

can only be because one or more vertices in Ut are adjacent to colored

vertices in Vt, but previously were not believed to be neighbors of these

colored vertices. So search for a vertex v ∈ Vt and stages t0 < t and

s0 < s′ such that Nt0,s0(v) 6= Nt,s′(v), and for which it is possible to

rewind As′ to As0 without violating the restraint of any higher priority

requirement. If this search is successful, set As′+1 = As0 (which might

add or remove elements from A) and place restraint on A up to the use

of Φ
As0
e (v). Now the premise of the requirement is false, so cease work

17



on the strategy (unless the requirement is later injured). On the other

hand, if no v, t0, s0 are found, then color the vertices of Ut using the

online coloring, set Vt+1 = Vt ∪ Ut, and move to stage t+ 1.

The requirement can be injured if a higher priority requirement changes

A below the restraint placed by R〈e,i,n〉 (which only happens if we thought

we had met the requirement by making the graph not A-computable). If this

happens, we simply restart the strategy where we left off.

Another way other requirements can interact with the strategy for R〈e,i,n〉
is to change A while we are running the computation of Nt,s(v) (since we have

no guarantee that Nt,s(v) will exist; ΦAs
e (v) or ψi(u, v) might take a long time

to converge, or might not at all). If this change in A occurs below the use

of ΦAs
e (v) (while waiting for ψi to halt) or before ΦAs

e (v) has halted, we say

that R〈e,i,n〉 has been disturbed and just restart the computation of Nt,s(v).

Verification. We will argue that each requirement is injured only finitely

often and as such is satisfied. We must also verify that A is ∆0
2. To this

end, suppose for contradiction that some x ∈ N enters and leaves A infinitely

often. Let Pe be the requirement that first puts x into A (this is the only

way an element can enter A for the first time). Only the requirements Rj

of priority higher than Pe can remove x or put x back in from now on,

and every time this happens, the strategy which changes the status of x puts

restraint on A above x. So we conclude that there must be some requirement

of priority higher than Pe that issues restraint infinitely often. Let Q be the

least such requirement. Consider the last stage at which any requirement

higher than Q issues restraint. The next stage at which Q issues restraint

will satisfy Q (because the only time either kind of strategy issues restraint

18



is when the requirement is, until injured, satisfied), so in fact Q will never

issue restraint again, a contradiction. Thus A is limit computable and as

such ∆0
2.

We show that for all e, i, and n, requirements Pe and R〈e,i,n〉 are satisfied.

Inductively assume all requirements of priority higher than Q are satisfied.

We consider the two possibilities.

Case 1. Q = Pe for some e. We will have Pe automatically satisfied if ϕe

is not total or not a characteristic function, so assume ϕe(x)↓ ∈ {0, 1} for all

x ∈ N. Since no satisfied requirement can issue restraint infinitely often (as

both kinds of requirements cease computation as soon as they issue restraint

and only continue computation if injured), there will be some finite stage ŝ

at which the strategy for Pe picks its last witness, call it x. At some later

stage, ϕe(x)↓. If ϕe(x) = 0, then we put x ∈ A and restrain A up to x. No

higher priority requirement ever changes A again (since they are done issuing

restraint), so Pe will be and always remain satisfied. If ϕe(x) = 1, then we

do not put x ∈ A. While we do not issue restraint in this case, we do not

need to, as only the requirements Pi can put elements into A for the first

time. Note that in either case, Pe only changes A finitely often (and as such,

only injures other requirements finitely often).

Case 2. Q = R〈e,i,n〉 for some e, i, and n. Assume that ψi is a computable,

locally finite graph with chromatic number n and whose neighborhood func-

tion is ΦA
e . Let ŝ be a stage at which all higher priority requirements have

issued restraint for the last time. Say that we are at stage t̂ of the strategy

at this point in the construction. At this stage we might still need to use the

online coloring, but starting with stage t̂ + 1, we will always be able to use

19



the alternating coloring. This is because if we ever needed to use the online

coloring, we would first try to rewind A to a previous state that did not

correctly compute the neighborhood function on some vertex. If Aŝ or any

future version of A are incorrect about the neighbors of any of the vertices

they are asked about, we would rewind back to that incorrect version of A

and ΦA
e would not be the neighborhood function. But assuming it is, we see

that after stage ŝ we will only use the alternating coloring. Since by then

we have used the online coloring only finitely often, on only finitely many

vertices, we will have a coloring in finitely many colors.

All that remains is to verify that we are able to complete each stage t

of the strategy. This is not obvious because to get to the part of stage t

where we color vertices, we must first compute Nt,s′(v) for all v ∈ Vt, and

requirements of any priority (higher or lower) can disturb this process. To

compute Nt,s(v) we must first find ΦAs
e (v), and then check a bunch of edges

using ψi. Eventually, there will be a stage at which restraint is placed on A

above the use of ΦA
e (v). (Note the oracle here is A, not As.) So R〈e,i,n〉 will

not have been disturbed at such a stage, and we will be able to carry out the

computation of Nt,s(v).

As a brief analysis of the construction in the above proof, notice that there

were two major features of the given A-computable graph ψi at play: ψi’s

neighborhood function and the coloring of ψi’s vertices. If we disregard one of

these features, namely, the coloring, and only worry about the neighborhood

function, then we obtain a stronger result as follows.

Theorem 3.3. There exists a noncomputable ∆0
2 set A such that every A-

computable graph is highly computable.

20



Proof. The construction for the proof of this theorem is a modification of

the construction for the proof of Theorem 3.2. The following shows how to

modify the strategy used to satisfy each R〈e,i,n〉. Begin the strategy the same

way, but instead of defining ∆ to be the finite computable coloring, we now

define it to be the neighborhood function of ψi (we simply ignore the n).

However, this time we completely redefine ∆ each time R〈e,i,n〉 is injured. If

ψi is an A-computable graph via ΦA
e , then there will be some finite stage at

which we redefine ∆ for the last time. Therefore ∆ is total and yields the

neighborhood function of ψi (in our new construction).

Observe that the above theorem allows us to specify the computable

chromatic number of the A-computable graphs mentioned in Theorem 3.2.

Specifically, given n, there is a noncomputable ∆0
2 set A such that every A-

computable graph that is n-colorable is computably (2n − 1)-colorable (by

Theorems 3.3 and 3.1). However, we lose the uniformity of the coloring in

Theorem 3.2.

The sets like those constructed above will be of interest in the next section

so let’s give them a special name.

Definition 3.4. We say that a set A is low for graph neighborhood if every A-

computable graph is actually highly computable (that is, if G is a computable

graph such that NG ≤T A, then NG is computable).

From Theorem 3.3, we immediately get:

Corollary 3.5. There exists a noncomputable ∆0
2 set which is low for graph

neighborhood.

On the other hand, from Theorems 1.2 and 3.1, we have:

21



Corollary 3.6. No noncomputable c.e. set is low for graph neighborhood.

4. Classifying Sets Low for Graph Neighborhood

We have an explicit construction of a noncomputable ∆0
2 set A that pro-

hibits Theorem 1.2 from being extended to ∆0
2 sets in general. However,

by using a known result from computability theory (namely, the existence

of minimal ∆0
2 sets), we can actually give a purely existential argument of

such a set A. To do this, we begin with the following observation about

A-computable graphs for any ∆0
2 set A.

Lemma 4.1. For any ∆0
2 set A and any A-computable graph G, there is a

c.e. set B such that B ≤T A and G is B-computable.

Proof. Let A be a ∆0
2 set, and let G be an A-computable graph. Fix a

computable approximation As of the set A. By the recursion theorem, we

may recursively know an index for the Turing reduction that witnesses G

being A-computable, so let’s say that the reduction is Ψi (and so for all x,

ΨA
i (x)↓ = NG(x)). We also know an index for the graph, say G = ϕe.

The c.e. set B will have elements of the form 〈v, s〉, which will code the

stage s by which ΨA
i (v) converges to its limit. For a fixed vertex v in the

graph G, we do the following (dovetailing this process through all vertices of

G).

Construction. At stage s in the construction of B, we compute As, and

run ΨAs
i,s (v). If ΨAs

i,s (v)↑, then we do nothing and go to stage s+ 1.

If ΨAs
i,s (v)↓, then we check whether the value of ΨAs

i,s (v)↓ is consistent with

G by running ϕe on all pairs of the form (v, x), where x is no more than the

22



largest vertex mentioned so far in the construction, to see if the vertices that

ΨAs
i,s (v) claims are neighbors of v are actually neighbors of v. Note that ϕe

will converge on all such pairs since G is computable. If it turns out that

ΨAs
i,s (v) is incorrect, or appears to be correct but had previously given the

same (apparently correct) approximation, then do nothing and go to stage

s + 1. But if ΨAs
i,s (v) is consistent with G as defined above and we see that

all previous approximations are incorrect, then we enumerate each number

〈v, r〉, for r ≤ s, (not already in B) into B, and go to stage s+ 1.

This ends the construction.

Verification. Note that B is c.e. by the construction.

We first verify that the graph G is B-computable. Indeed, B will compute

the neighborhood of v in G by finding the first 〈v, s〉 not in B, computing As

and ΨAs
i,s (v), which will be the true neighborhood of v. For if ΨAs

i,s (v) 6= NG(v),

then at stage s− 1 of our construction of B, it appeared that Ψ
As−1

i,s−1(v) was

correct but all previous approximations were wrong (and actually were wrong,

according to G). But since ΨA
i (v) = NG(v), there must be a later stage t > s

at which ΨAt
i,t (v) = NG(v), and at the first such stage we would enumerate

〈v, r〉 into B for all r ≤ t, contradicting our assumption that 〈v, s〉 was not

in B.

Next, we claim B ≤T A. To decide whether 〈v, s〉 ∈ B, run ΨAt
i,t (v) for all

t < s and compare this with ΨA
i (v) (which must converge by assumption).

If ΨAt
i,t (v) = ΨA

i (v) for some t < s, then we will never put any 〈v, r〉 into B

for r > t, so we know that 〈v, s〉 /∈ B. If ΨAt
i,t (v) 6= ΨA

i (v) for any t < s,

then 〈v, s〉 ∈ B because there will be some later stage of our construction at

which our approximation does converge (correctly for the first time) and at

23



that stage we will put 〈v, s〉 into B.

This completes the verification and the proof.

Using this lemma, we can classify which sets are low for graph neighbor-

hood and summarize the results of this paper.

Theorem 4.2. Let A be a noncomputable ∆0
2 set. The following are equiva-

lent.

1. A is low for graph neighborhood.

2. Every c.e. set B ≤T A is computable.

3. Every A-computable graph with finite chromatic number has finite com-

putable chromatic number.

4. Every A-computable graph with an Euler path has a computable Euler

path.

Proof. If A is low for graph neighborhood, then every A-computable graph

is actually highly computable. Using the constructions in [13] and [2] we see

that both (1→ 3) and (1→ 4), respectively.

(1 → 2) Suppose A is low for graph neighborhood, and let B ≤T A be

c.e. Every B-computable graph is also A-computable (because if B computes

NG then so does A), and as such highly computable, so B is low for graph

neighborhood as well. Thus B is computable by Corollary 3.6.

(2→ 1) Suppose A is not low for graph neighborhood. Then there is an

A-computable graph G such that G is not highly computable. By Lemma

4.1, there is a c.e. set B such that G is B-computable. Since G is not highly

computable, we must have that B is noncomputable.

24



(3 → 2) Suppose (2) fails. Then there exists a noncomputable c.e. set

B ≤T A. So, by Theorem 1.2, there exists a B-computable graph G that

has finite chromatic number but does not have finite computable chromatic

number. Since G is also A-computable, (3) fails.

(4 → 2) The same proof works by replacing Theorem 1.2 with Theorem

2.1.

Notice that this theorem gives us a shortcut answer to Question 1.3.

There are minimal ∆0
2 sets [11], which in particular don’t compute any non-

computable c.e. sets. All minimal ∆0
2 sets are therefore low for graph neigh-

borhood. However, low for graph neighborhood is not equivalent to minimal

∆0
2. The class of 1-generic sets also never compute noncomputable c.e. sets

(see exercises VI.3.8 in [14]), so they too (those that are ∆0
2) are low for graph

neighborhood. Note also that low for graph neighborhood is not equivalent

to a set being low (in the sense that its jump is equivalent to the halting

problem). There are low sets which are low for graph neighborhood (since

there are low minimal degrees [15]), low sets which are not low for graph

neighborhood (since there are low c.e. sets), and non-low sets low for graph

neighborhood (since there are non-low minimal ∆0
2 degrees [12]).

5. Conclusion

We have shown how the c.e.-permitting technique used in [4] can be ap-

plied to other areas where it might be interesting to investigate A-computable

graphs, such as Euler paths or domatic partitions (Gasarch and Lee inves-

tigated the graph colorings in A-computable graphs). In the case of Euler

25



paths, there is always an algorithm to find an Euler path in a highly com-

putable graph which has an Euler path, but a computable counterexample

exists for computable graphs which have Euler paths (analogously to the case

of graph colorings). When A is a noncomputable c.e. set, we have shown

that A-computable graphs behave the same as computable graphs for both

Euler paths and domatic partitions. It appears that the technique is general

enough to apply to a whole host of graph-theoretic properties, although we

leave the statement and proof of this general principle as an open problem.

In [4], Gasarch and Lee asked whether their main result about graph

colorings in A-computable graphs (with A noncomputable c.e.) can be ex-

tended to any noncomputable ∆0
2 set A. We have answered this question in

the negative. First, we directly constructed such a set A in Theorem 3.2.

Then in Lemma 4.1, we showed that for any noncomputable ∆0
2 set A and

any A-computable graph G, there is a c.e. set B ≤T A such that G is also

B-computable. So if A is a noncomputable ∆0
2 set that does not compute any

noncomputable c.e. set, then A also yields a negative answer to the question

of Gasarch and Lee. We have called such sets low for graph neighborhood,

which we have classified in Theorem 4.2. We know there are many examples

of sets which are low for graph neighborhood, since neither minimal ∆0
2 sets

nor 1-generics can compute any noncomputable c.e. sets.

Finally, an idea to extend this work. Nies and others have investigated

various lowness notions (especially with respect to algorithmic randomness

as in [10]). From various notions of lowness, such as “low for random,” they

have defined weak reducibilities, such as the LR reducibility ≤LR. We could

try to define a reducibility with the notion of “low for graph neighborhood,”

26



but unfortunately it would not define a weak reducibility, but only because it

does not respect the jump operator. Perhaps we could fix this by relativizing

appropriately. A future direction would be to investigate whether we could

find the appropriate relativization, and then prove properties about this new

reducibility and how it relates to other notions of lowness.

Acknowledgements

The authors would like to thank the anonymous reviewer for several help-

ful suggestions.

References

[1] Dwight R. Bean, Effective coloration, J. Symbolic Logic 41 (1976), no. 2, 469–480.

MR0416889 (54 #4952)

[2] , Recursive Euler and Hamilton paths, Proc. Amer. Math. Soc. 55 (1976),

no. 2, 385–394. MR0416888 (54 #4951)

[3] Hans-Georg Carstens and Peter Päppinghaus, Recursive coloration of countable

graphs, Ann. Pure Appl. Logic 25 (1983), no. 1, 19–45. MR722167 (85h:03045)

[4] William I. Gasarch and Andrew C. Y. Lee, On the finiteness of the recursive chromatic

number, Ann. Pure Appl. Logic 93 (1998), no. 1-3, 73–81. Computability theory.

MR1635600 (2000a:03070)

[5] David Harel, Hamiltonian paths in infinite graphs, Israel J. Math. 76 (1991), no. 3,

317–336. MR1177348 (93d:68023)

[6] Matthew Jura, Oscar Levin, and Tyler Markkanen, Domatic partitions of computable

graphs, Arch. Math. Logic 53 (2014), no. 1-2, 137–155. MR3151402

[7] Henry A. Kierstead, Recursive colorings of highly recursive graphs, Canad. J. Math.

33 (1981), no. 6, 1279–1290. MR645224 (84b:05045)

27



[8] Alfred B. Manaster and Joseph G. Rosenstein, Effective matchmaking (recursion the-

oretic aspects of a theorem of Philip Hall), Proc. London Math. Soc. (3) 25 (1972),

615–654. MR0314610 (47 #3161)

[9] Russell Miller, The ∆0
2-spectrum of a linear order, J. Symbolic Logic 66 (2001), no. 2,

470–486. MR1833459 (2002e:03065)

[10] André Nies, Computability and randomness, Oxford Logic Guides, vol. 51, Oxford

University Press, Oxford, 2009. MR2548883 (2011i:03003)

[11] Gerald E. Sacks, Degrees of unsolvability, Princeton University Press, Princeton, N.J.,

1963. MR0186554 (32 #4013)

[12] Leonard P. Sasso Jr., A minimal degree not realizing least possible jump, J. Symbolic

Logic 39 (1974), 571–574. MR0360242 (50 #12692)

[13] James H. Schmerl, Recursive colorings of graphs, Canad. J. Math. 32 (1980), no. 4,

821–830. MR590647 (81m:03054)

[14] Robert I. Soare, Recursively enumerable sets and degrees, Perspectives in Mathe-

matical Logic, Springer-Verlag, Berlin, 1987. A study of computable functions and

computably generated sets. MR882921 (88m:03003)

[15] C. E. M. Yates, Initial segments of the degrees of unsolvability. II. Minimal degrees.,

J. Symbolic Logic 35 (1970), 243–266. MR0274288 (43 #53)

28


	Introduction
	A-Computable Graphs and C.E.-Permitting
	Constructing a Counterexample
	Classifying Sets Low for Graph Neighborhood
	Conclusion

