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Machines & Self-Reference

o Consider a machine M that prints out expressions made with
five symbols:
~, P, N, (, and ).

@ An expression is any non-empty finite string of symbols, e.g.,
N~(P,  )P((((((,  and  P(N(~)).

e For an expression X, a sentence is any expression of the form:
P(X), PN(X), ~P(X), or ~PN(X).

@ We interpret the meaning of the symbols as follows.

P: "is printable”

~: “not
N: “the norm of" E.g., the norm of P~ is P~(P~).
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Telling the Truth

Rule:
The machine M can only print TRUE sentences.

Example 1
Q If M prints P(X), then X is printable. So M eventually
prints X.
@ If M prints ~NPN(X), then the norm of X, i.e., X(X), is not
printable. So M never prints X (X).
@ If M prints X, then M does not necessarily print P(X).

Question:
Can such an M print ALL true sentences?
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You Can’t Handle the Truth!

Can such an M print ALL true sentences?

No. The following sentence is true but M will not print it:

~PN(~PN)

Notice:

~PN(~PN) is true <= ~PN(~PN) is not printable



Computability Theory
©0000

Computable Sets

Sets of Natural Numbers

@ The set of natural numbers: N={0,1,2,3,...}
@ The subsets of N: &, N,
{03, {1}, {2}, {3},...,

{0,1},{0,2},{1,2},{0,3},{1,3},{2,3},...,
{0,1,2},...,

{0,2,4,6,8,...},{1,3,5,7,9,...},
{2,3,5,7,11,.. .}, ...
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Computable Sets

Sets of Natural Numbers

@ The set of natural numbers: N ={0,1,2,3,...} — countable

@ The subsets of N: &, N,
{0}, {13, {2}, {3}, ..,
{0,1},{0,2},{1,2},{0,3},{1,3},{2,3}, ...,
{0,1,2},...,

{0,2,4,6,8,...},{1,3,5,7,9,...},
{2,3,5,7,11,.. .}, ...

— uncountably many
(We can’t number ALL the subsets of N.)
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Computable Sets

What Is a Computer Program?

Example 2 (a + b)

Input: a, b
Want Qutput: a+b
Program:
Q s=a
Q@ ::=0
QIF { ixb
i. si=s5+1
i i=i+1)

Q@ Print s

A (computer) program is a machine with a finite list of steps
(written from a finite alphabet) that takes in a natural number
(the input), runs the steps on the input, and (if it stops running)
prints out a natural number (the output).
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A computer program is a function f: N - N (which may
not have an output for some inputs).
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A computer program is a partial function f: N — N (which may
not have an output for some inputs).

Example 3 (Familiar programs)

a+b, a+b a>b, a-b, a’ alb, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)

Program Name: EVENstopODDdontstop
Input: a
Program:

@ If a is EVEN, Then Print 0.

Q If a is ODD, Then Go To Step 1.

Output:




Computability Theory
00®00

Computable Sets

Examples of Programs

A computer program is a partial function f: N — N (which may
not have an output for some inputs).

Example 3 (Familiar programs)

a+b, a+b a>b, a-b, a’ alb, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)
Program Name: EVENstopODDdontstop
Input: a
Program:
@ If a is EVEN, Then Print 0.
Q If a is ODD, Then Go To Step 1.

0,
Output: o
{T (no output), if a is odd

if a is even
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Computable Sets

Computable Functions and Sets

@ Each program is a finite list of steps. So how many different
programs are there? Only countably many (the size of N).

@ So we can number ALL of the programs:
©0, P1,¥Y2,P3, P4, P5,%6, - - -

@ We call these @, the partial computable functions. If ¢, is
total (i.e., dom(p.) =N), we call it a computable function.

@ ACN js called a computable set if

1 ifzeA

xa(@) = {o ifzd A

is a computable function.
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U
because xg(z) = {

o N

1 ﬁme@_

. 0 (for all z)
0 ifzé¢w
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(“ )
1 fzey
because T) = =0 (forall z
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1 ifxeN
0 ifz¢N

@ A, where A is a finite set

because yn(z) = { 1 (for all x)

e E={z:xis even}
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Example 5

(“ )
1 fzey
because T) = =0 (forall z
X@( ) {0 if:v¢® ( )
o N

1 ifxeN
0 ifz¢N

A, where A is a finite set

because yn(z) = { 1 (for all x)

O ={z:zis odd}

°
o E={z:xiseven}

°

o C, where C is a computable set
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Computable Sets

Examples of Computable Sets

Example 5

(“ )
1 fzey
because T) = =0 (forall z
X@( ) {0 if:v¢® ( )
o N
1 fzeN
because = =1 (for all
use xn(z) {0 if 2 ¢ N ( 7)

A, where A is a finite set
E={z:ziseven}
O ={z:zis odd}

o C, where C is a computable set

e 6 o

o S={x:xis a perfect square}

@ P={x:xis a prime number}
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Non-Computable Sets

Are There Non-Computable Sets?

@ Are there any sets that are NOT computable?

@ There are only countably many computable sets, but
uncountably many subsets of N.

@ There are many non-computable sets!

@ Can | see one?
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Non-Computable Sets

A Not-Computable Set

Example 6
The Halting Problem:
K ={e:pc(e)l}

(pe(e) ) means “p. on input e stops running”)

What does K mean?

e Say EVENstopODDdontstop is @12, so e = 12. Does ¢12(12)
stop or not stop? It stops running. So 12 € K.

e K is "ALL the e such that .(e) stops running.”
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Non-Computable Sets

Why Is K ={e: p.(e)l} Not Computable?

@ Assume K were a computable set. That is, assume

(r)={" Treky table functi
xX) = IS @ computable tunction.
XK 0 ifzfK P

@ Claim: The following function is also computable:
or(x)+1 ifzeK
f(x) = .
0 ifx ¢ K
Why?
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@ Assume K were a computable set. That is, assume

(r)={" Treky table functi
xX) = IS @ computable tunction.
XK 0 ifzfK P

@ Claim: The following function is also computable:

Jpe(z)+1 ifzeK
fﬁﬂ_{o if o ¢ K

Why? Input: z
Program:
If xx(z) =1, Then Print p,(x) +1
If xx(x) =0, Then Print 0

On the other hand: f # ¢, for any e because:
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Non-Computable Sets

Why Is K ={e: p.(e)l} Not Computable?

@ Assume K were a computable set. That is, assume

(r)={" Treky table functi
xX) = IS @ computable tunction.
XK 0 ifzfK P

@ Claim: The following function is also computable:

Jpe(z)+1 ifzeK
fﬁﬂ_{o if o ¢ K

Why? Input: z
Program:
If xx(z) =1, Then Print p,(x) +1
If xx(x) =0, Then Print 0

On the other hand: f # ¢, for any e because:
If e € K, then f(e) = pe(e) + 1+ pc(e).
If e ¢ K, then f(e) =0 # pe(e) (because w.(e) doesn't stop).
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Domatic Partitions

Domatic 2-partition No domatic 3-partition

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition
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Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition No domatic 3-partition
1 A

d(G) =2
Domatic number of a graph G:

d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition
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Highly Computable Graphs

d(G) — d°(@) for Highly Computable Graphs G

Definition 2
A graph G = (V, E) is highly computable ifV and E are
computable sets and there is a computable function that, when

given v € V', outputs the degree of v (i.e., the number of vertices
adjacent to v).

Theorem 1

| \

For every n > 3, there is a highly computable graph G such that
d(G)=n and d°(G) =n - 1.

A\
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Highly Computable Graphs

Total Domatic Partitions

@ Foranyn>1 and any graph G = (V, E), a (computable)
partition p:V — {1,...,n} into n colors is a (computable)
total domatic n-partition if the vertices adjacent to v use
up all n colors (i.e.,
(VoeV)(Vie{l,...,n})(FueV)[uEvAp(u) =1i]).

@ The (computable) total domatic number of a graph G,
denoted by di(G) (resp., d7(G)) is the maximum n such that
G has a (computable) total domatic n-partition.

For every n > 3, there is a highly computable graph G such that
di(G)=n and dj(G) =n-1.
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The Double K4-Gadget
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The Double K4-Gadget

For every n > 3, there is a highly computable graph G such that
di(G)=n and dj(G) =n-1.

-A Vo

-A U1

s

SN ]
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Highly Computable Graphs

The Double K4-Gadget

For every n > 3, there is a highly computable graph G such that
di(G)=n and dj(G) =n-1.

-A Vo

-A (51 A

SK I

-A V2



An Open Question

Future Research

Every highly computable graph with a domatic 4-partition has a
computable domatic 3-partition.

Let G be a computable k-regular graph with d(G) =k+1. Then G
has a computable domatic n-partition for all n satisfying
2" _1<k+1,in fact, n2 <k +1.




Thank you.



@ Matthew Jura, Oscar Levin, and Tyler Markkanen.
Domatic partitions of computable graphs.
Arch. Math. Logic, 53(1-2):137-155, 2014,

[ Robert I. Soare.
Computability Theorey and Applications [CTA].
under contract with Springer-Verlag, Berlin, 2077
(under revision).
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