Can Computers Do Math? An Introduction to Computability Theory and Effective Mathematics

Tyler Markkanen

Springfield College

CCSU Mathematics Department Colloquium February 27, 2015

Computability Theory 00000000 Domatic Numbers

An Open Question

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ Ξ = の Q @

Joint with Matthew Jura and Oscar Levin.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Machines & Self-Reference

 $\bullet\,$ Consider a machine M that prints out expressions made with five symbols:

~,
$$P$$
, N , (, and).

• An expression is any non-empty finite string of symbols, e.g.,

$$N \sim (P,)P(((((((, and P(N(\sim)).$$

• For an expression X, a **sentence** is any expression of the form:

$$P(X)$$
, $PN(X)$, $\sim P(X)$, or $\sim PN(X)$.

- We interpret the meaning of the symbols as follows.
 - P: "is printable"
 - ~: "not"
 - N: "the norm of" E.g., the norm of $P \sim \text{is } P \sim (P \sim)$.

Domatic Numbers

Telling the Truth

Rule:

The machine M can only print *TRUE* sentences.

Example 1

- If M prints P(X), then X is printable. So M eventually prints X.
- If M prints $\sim PN(X)$, then the norm of X, i.e., X(X), is not printable. So M never prints X(X).
- If M prints X, then M does not necessarily print P(X).

Question:

Can such an M print ALL true sentences?

Domatic Numbers

An Open Question

You Can't Handle the Truth!

Can such an M print ALL true sentences?

No. The following sentence is true but M will not print it:

 $\sim PN(\sim PN)$

Notice:

 $\sim PN(\sim PN)$ is true $\iff \sim PN(\sim PN)$ is not printable

- The set of natural numbers: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ countable
- The subsets of \mathbb{N} : \emptyset, \mathbb{N} ,

 $\{0\}, \{1\}, \{2\}, \{3\}, \dots, \\ \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 3\}, \{1, 3\}, \{2, 3\}, \dots, \\ \{0, 1, 2\}, \dots, \\ \vdots \\ \{0, 2, 4, 6, 8, \dots\}, \{1, 3, 5, 7, 9, \dots\}, \\ \{2, 3, 5, 7, 11, \dots\}, \dots \\ \vdots \\ - \text{ uncountably many}$

(We can't number ALL the subsets of \mathbb{N} .)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The set of natural numbers: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ countable
- The subsets of \mathbb{N} : \emptyset, \mathbb{N} ,

 $\{0\}, \{1\}, \{2\}, \{3\}, \dots, \\ \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 3\}, \{1, 3\}, \{2, 3\}, \dots, \\ \{0, 1, 2\}, \dots, \\ \vdots \\ \{0, 2, 4, 6, 8, \dots\}, \{1, 3, 5, 7, 9, \dots\}, \\ \{2, 3, 5, 7, 11, \dots\}, \dots \\ \vdots \\ - \text{ uncountably many}$

(We can't number ALL the subsets of \mathbb{N} .)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The set of natural numbers: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ countable
- The subsets of \mathbb{N} : \emptyset, \mathbb{N} ,

 $\{0\}, \{1\}, \{2\}, \{3\}, \dots, \\ \{0,1\}, \{0,2\}, \{1,2\}, \{0,3\}, \{1,3\}, \{2,3\}, \dots, \\ \{0,1,2\}, \dots, \\ \vdots \\ \{0,2,4,6,8,\dots\}, \{1,3,5,7,9,\dots\}, \\ \{2,3,5,7,11,\dots\}, \dots \\ \vdots \\ - \text{ uncountably many} \\ (\text{We can't number ALL the subsets of } \mathbb{N}.)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

What Is a Computer Program?

Example 2 (a+b)

Input: *a*, *b* Want Output: *a* + *b* Program:

- $\bullet s \coloneqq a$
- $\textcircled{2} i \coloneqq 0$

$$IF \{ i \neq b \}$$

ii.
$$i \coloneqq i+1$$
 }

Print s

A **(computer) program** is a machine with a finite list of steps (written from a finite alphabet) that takes in a natural number (the **input**), runs the steps on the input, and (if it stops running) prints out a natural number (the **output**).

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

What Is a Computer Program?

Example 2 (a + b)

i.
$$s \coloneqq s + 1$$

ii. $i \coloneqq i + 1$

Print s

A **(computer) program** is a machine with a finite list of steps (written from a finite alphabet) that takes in a natural number (the **input**), runs the steps on the input, and (if it stops running) prints out a natural number (the **output**).

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

What Is a Computer Program?

Example 2(a+b)

Input: *a*, *b* Want Output: *a* + *b* Program:

- $\bullet s \coloneqq a$
- 2 i ≒ 0

$$IF \{ i \neq b \\ i \in -s+1$$

ii.
$$i := i + 1$$

• Print s

A **(computer) program** is a machine with a finite list of steps (written from a finite alphabet) that takes in a natural number (the **input**), runs the steps on the input, and (if it stops running) prints out a natural number (the **output**).

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

What Is a Computer Program?

Example 2 (a+b)

Input: *a*, *b* Want Output: *a* + *b* Program:

- $\bullet s \coloneqq a$
- **3** IF { $i \neq b$ i. $s \coloneqq s + 1$ ii. $i \coloneqq i + 1$ }

• Print s

A (computer) program is a machine with a finite list of steps (written from a finite alphabet) that takes in a natural number (the input), runs the steps on the input, and (if it stops running) prints out a natural number (the **output**).

	0000000		
Computable Sets			
Examples o	f Programs		
A comput not have a	er program is a partial an output for some inp	function $f: \mathbb{N} \to \mathbb{N}$ (we uts).	hich may

Example 3 (Familiar programs)

Computability

a + b, a - b, a > b, $a \cdot b$, a^b , a|b, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)

Program Name: EVENstopODDdontstop **Input:** *a*

Program:

- If a is EVEN, Then Print 0.
- ② If a is ODD, Then Go To Step 1.

Output: $\begin{cases} 0, & \text{if } a \text{ is even} \\ \uparrow & (\text{no output}), & \text{if } a \text{ is odd} \end{cases}$

	0000000		
Computable	e Sets		
Exam	ples of Programs		
A no	computer program is a partial fur t have an output for some inputs	nction $f: \mathbb{N} \to \mathbb{N}$ (which ma).	У

Example 3 (Familiar programs)

a + b, $a \doteq b$, a > b, $a \cdot b$, a^b , a|b, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)

Program Name: EVENstopODDdontstop **Input:** *a*

Computability Theory

Program:

Self-Reference

- If a is EVEN, Then Print 0.
- ② If a is ODD, Then Go To Step 1.

Output: $\begin{cases} 0, & \text{if } a \text{ is even} \\ \uparrow (\text{no output}), & \text{if } a \text{ is odd} \end{cases}$

An Open Question

Self-Reference	Computability Theory	Domatic Numbers 000000	An Open Question
Computable Sets			
Examples o	f Programs		

A computer program is a partial function $f : \mathbb{N} \to \mathbb{N}$ (which may not have an output for some inputs).

Example 3 (Familiar programs)

a + b, a - b, a > b, $a \cdot b$, a^b , a|b, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)

Program Name: EVENstopODDdontstop **Input:** a

Program:

- If a is EVEN, Then Print 0.
- ② If a is ODD, Then Go To Step 1.

Output: $\begin{cases} 0, & \text{if } a \text{ is even} \\ \uparrow & (\text{no output}), & \text{if } a \text{ is odd} \end{cases}$

Self-Reference	Computability Theory	Domatic Numbers 000000	An Open Question
Computable Sets			
Examples of P	rograms		

A computer program is a partial function $f : \mathbb{N} \to \mathbb{N}$ (which may not have an output for some inputs).

Example 3 (Familiar programs)

a + b, a - b, a > b, $a \cdot b$, a^b , a|b, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)

Program Name: EVENstopODDdontstop **Input:** *a* **Program:**

- **1** If a is EVEN, Then Print 0.
- **2** If a is ODD, Then Go To Step 1.

Output:

if a is even), if a is odd

Self-Reference 000	Computability Theory	Domatic Numbers 000000	An Open Question
Computable Sets			
Examples of	Programs		

A computer program is a partial function $f : \mathbb{N} \to \mathbb{N}$ (which may not have an output for some inputs).

Example 3 (Familiar programs)

a + b, a - b, a > b, $a \cdot b$, a^b , a|b, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)

Program Name: EVENstopODDdontstop Input: a **Program:**

- **1** If a is EVEN, Then Print 0.
- If a is ODD, Then Go To Step 1.

Output: $\begin{cases} 0, & \text{if } a \text{ is even} \\ \uparrow & (\text{no output}), & \text{if } a \text{ is odd} \end{cases}$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Computable Functions and Sets

- Each program is a finite list of steps. So how many different programs are there?
- So we can number ALL of the programs: $\varphi_0, \varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6, \dots$

Definition 3

- We call these φ_e the partial computable functions. If φ_e is total (i.e., dom(φ_e) = N), we call it a computable function.
- $A \subseteq \mathbb{N}$ is called a computable set if

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Computable Functions and Sets

- Each program is a finite list of steps. So how many different programs are there? Only countably many (the size of ℕ).
- So we can number ALL of the programs:

 $\varphi_0, \varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6, \dots$

Definition 1

We call these φ_e the partial computable functions. If φ_e is total (i.e., dom(φ_e) = N), we call it a computable function.

• $A \subseteq \mathbb{N}$ is called a computable set if

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Computable Functions and Sets

- Each program is a finite list of steps. So how many different programs are there? Only countably many (the size of ℕ).
- So we can number ALL of the programs: $\varphi_0, \varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6, \dots$

Definition 3

• We call these φ_e the partial computable functions. If φ_e is total (i.e., dom(φ_e) = \mathbb{N}), we call it a computable function.

• $A \subseteq \mathbb{N}$ is called a computable set if

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Computable Functions and Sets

- Each program is a finite list of steps. So how many different programs are there? Only countably many (the size of ℕ).
- So we can number ALL of the programs:

 $\varphi_0, \varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6, \dots$

Definition 1

• We call these φ_e the partial computable functions. If φ_e is total (i.e., dom(φ_e) = \mathbb{N}), we call it a computable function.

• $A \subseteq \mathbb{N}$ is called a computable set if

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Computable Functions and Sets

- Each program is a finite list of steps. So how many different programs are there? Only countably many (the size of ℕ).
- So we can number ALL of the programs:

 $\varphi_0, \varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6, \ldots$

Definition 1

- We call these φ_e the partial computable functions. If φ_e is total (i.e., dom(φ_e) = \mathbb{N}), we call it a computable function.
- $A \subseteq \mathbb{N}$ is called a computable set if

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Examples of Computable Sets

Example 5

• Ø

ecause
$$\chi_{\varnothing}(x) = \begin{cases} 1 & \text{if } x \in \varnothing \\ 0 & \text{if } x \notin \varnothing \end{cases} = 0 \quad \text{(for all } x \notin \varnothing$$

 $\bullet \mathbb{N}$

Decause $\chi_{\mathbb{N}}(x) = egin{cases} 1 & ext{if } x \in \mathbb{N} \ 0 & ext{if } x \notin \mathbb{N} \end{bmatrix} = 1$ (for all x

- A, where A is a finite set
- $E = \{x : x \text{ is even}\}$
- $O = \{x : x \text{ is odd}\}$
- \overline{C} , where C is a computable set
- $S = \{x : x \text{ is a perfect square}\}$
- $P = \{x : x \text{ is a prime number}\}$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Examples of Computable Sets

Example 5

•Ø

because
$$\chi_{\varnothing}(x) = \begin{cases} 1 & \text{if } x \in \emptyset \\ 0 & \text{if } x \notin \emptyset \end{cases} = 0 \quad (\text{for all } x)$$

 $\bullet \mathbb{N}$

pecause $\chi_{\mathbb{N}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{N} \\ 0 & \text{if } x \notin \mathbb{N} \end{cases} = 1$ (for all x

- A, where A is a finite set
- $E = \{x : x \text{ is even}\}$
- $O = \{x : x \text{ is odd}\}$
- \overline{C} , where C is a computable set
- $S = \{x : x \text{ is a perfect square}\}$
- $P = \{x : x \text{ is a prime number}\}$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Examples of Computable Sets

Example 5

because
$$\chi_{\varnothing}(x) = \begin{cases} 1 & \text{if } x \in \varnothing \\ 0 & \text{if } x \notin \varnothing \end{cases} = 0 \quad (\text{for all } x)$$

 $\bullet \mathbb{N}$

because $\chi_{\mathbb{N}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{N} \\ 0 & \text{if } x \notin \mathbb{N} \end{cases} = 1 \quad (\text{for all } x)$

- A, where A is a finite set
- $E = \{x : x \text{ is even}\}$
- $O = \{x : x \text{ is odd}\}$
- \overline{C} , where C is a computable set
- $S = \{x : x \text{ is a perfect square}\}$
- $P = \{x : x \text{ is a prime number}\}$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Examples of Computable Sets

- \varnothing because $\chi_{\varnothing}(x) = \begin{cases} 1 & \text{if } x \in \varnothing \\ 0 & \text{if } x \notin \varnothing \end{cases} = 0 \quad (\text{for all } x)$
- N

Decause
$$\chi_{\mathbb{N}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{N} \\ 0 & \text{if } x \notin \mathbb{N} \end{cases} = 1 \quad (\text{for all } x)$$

- A, where A is a finite set
- $E = \{x : x \text{ is even}\}$
- $O = \{x : x \text{ is odd}\}$
- \overline{C} , where C is a computable set
- $S = \{x : x \text{ is a perfect square}\}$
- $P = \{x : x \text{ is a prime number}\}$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Examples of Computable Sets

•
$$\emptyset$$

because $\chi_{\emptyset}(x) = \begin{cases} 1 & \text{if } x \in \emptyset \\ 0 & \text{if } x \notin \emptyset \end{cases} = 0 \quad (\text{for all } x)$
• \mathbb{N}
because $\chi_{\mathbb{N}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{N} \\ 0 & \text{if } x \notin \mathbb{N} \end{cases} = 1 \quad (\text{for all } x)$

- A, where A is a finite set
- $E = \{x : x \text{ is even}\}$
- $O = \{x : x \text{ is odd}\}$
- \overline{C} , where C is a computable set
- $S = \{x : x \text{ is a perfect square}\}$
- $P = \{x : x \text{ is a prime number}\}$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Examples of Computable Sets

•
$$\emptyset$$

because $\chi_{\emptyset}(x) = \begin{cases} 1 & \text{if } x \in \emptyset \\ 0 & \text{if } x \notin \emptyset \end{cases} = 0 \quad (\text{for all } x)$
• \mathbb{N}
because $\chi_{\mathbb{N}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{N} \\ 0 & \text{if } x \notin \mathbb{N} \end{cases} = 1 \quad (\text{for all } x)$

- A, where A is a finite set
- $E = \{x : x \text{ is even}\}$
- $O = \{x : x \text{ is odd}\}$
- \overline{C} , where C is a computable set
- $S = \{x : x \text{ is a perfect square}\}$
- $P = \{x : x \text{ is a prime number}\}$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Examples of Computable Sets

•
$$\emptyset$$

because $\chi_{\emptyset}(x) = \begin{cases} 1 & \text{if } x \in \emptyset \\ 0 & \text{if } x \notin \emptyset \end{cases} = 0 \quad (\text{for all } x)$
• \mathbb{N}
because $\chi_{\mathbb{N}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{N} \\ 0 & \text{if } x \notin \mathbb{N} \end{cases} = 1 \quad (\text{for all } x)$

- A, where A is a finite set
- $E = \{x : x \text{ is even}\}$
- $O = \{x : x \text{ is odd}\}$
- \overline{C} , where C is a computable set
- $S = \{x : x \text{ is a perfect square}\}$
- $P = \{x : x \text{ is a prime number}\}$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Examples of Computable Sets

•
$$\emptyset$$

because $\chi_{\emptyset}(x) = \begin{cases} 1 & \text{if } x \in \emptyset \\ 0 & \text{if } x \notin \emptyset \end{cases} = 0 \quad (\text{for all } x)$
• \mathbb{N}
because $\chi_{\mathbb{N}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{N} \\ 0 & \text{if } x \notin \mathbb{N} \end{cases} = 1 \quad (\text{for all } x)$

- A, where A is a finite set
- $E = \{x : x \text{ is even}\}$
- $O = \{x : x \text{ is odd}\}$
- \overline{C} , where C is a computable set
- $S = \{x : x \text{ is a perfect square}\}$
- $P = \{x : x \text{ is a prime number}\}$

Computability Theory

Domatic Numbers

An Open Question

Computable Sets

Examples of Computable Sets

•
$$\emptyset$$

because $\chi_{\emptyset}(x) = \begin{cases} 1 & \text{if } x \in \emptyset \\ 0 & \text{if } x \notin \emptyset \end{cases} = 0 \quad (\text{for all } x)$
• \mathbb{N}
because $\chi_{\mathbb{N}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{N} \\ 0 & \text{if } x \notin \mathbb{N} \end{cases} = 1 \quad (\text{for all } x)$

- A, where A is a finite set
- $E = \{x : x \text{ is even}\}$
- $O = \{x : x \text{ is odd}\}$
- \overline{C} , where C is a computable set
- $S = \{x : x \text{ is a perfect square}\}$
- $P = \{x : x \text{ is a prime number}\}$

Computability Theory

Domatic Numbers

An Open Question

(日)

Non-Computable Sets

Are There Non-Computable Sets?

• Are there any sets that are NOT computable?

- There are only many computable sets, but many subsets of \mathbb{N} .
- There are many non-computable sets!
- Can I see one?

Computability Theory

Domatic Numbers

An Open Question

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三国 のへで

Non-Computable Sets

- Are there any sets that are NOT computable?
- There are only many computable sets, but many subsets of \mathbb{N} .
- There are many non-computable sets!
- Can I see one?

Computability Theory

Domatic Numbers

An Open Question

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三国 のへで

Non-Computable Sets

- Are there any sets that are NOT computable?
- There are only *countably* many computable sets, but many subsets of N.
- There are many non-computable sets!
- Can I see one?

Computability Theory

Domatic Numbers

An Open Question

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Non-Computable Sets

- Are there any sets that are NOT computable?
- There are only *countably* many computable sets, but *uncountably* many subsets of ℕ.
- There are many non-computable sets!
- Can I see one?

Computability Theory

Domatic Numbers

An Open Question

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Non-Computable Sets

- Are there any sets that are NOT computable?
- There are only *countably* many computable sets, but *uncountably* many subsets of ℕ.
- There are many non-computable sets!
- Can I see one?
Computability Theory

Domatic Numbers

An Open Question

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Non-Computable Sets

Are There Non-Computable Sets?

- Are there any sets that are NOT computable?
- There are only *countably* many computable sets, but *uncountably* many subsets of ℕ.
- There are many non-computable sets!
- Can I see one?

Self-Reference 000	Computability Theory ○○○○○○●○	Domatic Numbers 000000	An Open Question		
Non-Computable Sets					
A Not-Computable Set					

The **Halting Problem**: $K = \{e : \varphi_e(e) \downarrow\}$

 $(\varphi_e(e)\downarrow$ means " φ_e on input e stops running")

What does K mean?

 Say EVENstopODDdontstop is φ₁₂, so e = 12. Does φ₁₂(12) stop or not stop?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Self-Reference 000	Computability Theory ○○○○○●○	Domatic Numbers 000000	An Open Question
Non-Computable Sets			
A Not-Compu	table Set		

The Halting Problem: $K = \{e : \varphi_e(e) \downarrow\}$

 $(\varphi_e(e)\downarrow \text{ means } "\varphi_e \text{ on input } e \text{ stops running"})$

What does K mean?

 Say EVENstopODDdontstop is φ₁₂, so e = 12. Does φ₁₂(12) stop or not stop?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Self-Reference 000	Computability Theory ○○○○○○●○	Domatic Numbers 000000	An Open Question
Non-Computable Sets			
A Not-Com	nputable Set		

The **Halting Problem**: $K = \{e : \varphi_e(e) \downarrow\}$

 $(\varphi_e(e)\downarrow$ means " φ_e on input e stops running")

What does K mean?

 Say EVENstopODDdontstop is φ₁₂, so e = 12. Does φ₁₂(12) stop or not stop?

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

Self-Reference	Computability Theory	Domatic Numbers 000000	An Open Question
Non-Computable Sets			
A Not-Com	nputable Set		

The **Halting Problem**: $K = \{e : \varphi_e(e) \downarrow\}$

 $(\varphi_e(e)\downarrow$ means " φ_e on input *e* stops running")

What does K mean?

 Say EVENstopODDdontstop is φ₁₂, so e = 12. Does φ₁₂(12) stop or not stop?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Self-Reference 000	Computability Theory ○○○○○●○	Domatic Numbers 000000	An Open Question
Non-Computable Sets			
A Not-Con	nputable Set		
Example	6		

The Halting Problem: $K = \{e : \varphi_e(e) \downarrow\}$

 $(\varphi_e(e)\downarrow$ means " φ_e on input *e* stops running")

What does K mean?

• Say EVENstopODDdontstop is φ_{12} , so e = 12. Does $\varphi_{12}(12)$ stop or not stop?

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Self-Reference	Computability Theory ○○○○○○●○	Domatic Numbers 000000	An Open Question
Non-Computable Sets			
A Not-Com	nputable Set		

The **Halting Problem**: $K = \{e : \varphi_e(e) \downarrow\}$

 $(\varphi_e(e)\downarrow$ means " φ_e on input *e* stops running")

What does K mean?

• Say EVENstopODDdontstop is φ_{12} , so e = 12. Does $\varphi_{12}(12)$ stop or not stop? It stops running. So $12 \in K$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Self-Reference 000	Computability Theory ○○○○○○●○	Domatic Numbers 000000	An Open Question
Non-Computable Sets			
A Not-Com	nputable Set		

The **Halting Problem**: $K = \{e : \varphi_e(e) \downarrow\}$

 $(\varphi_e(e)\downarrow$ means " φ_e on input *e* stops running")

What does K mean?

• Say EVENstopODDdontstop is φ_{12} , so e = 12. Does $\varphi_{12}(12)$ stop or not stop? It stops running. So $12 \in K$.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

Computability Theory

Domatic Numbers

An Open Question

Non-Computable Sets

Why Is $K = \{e : \varphi_e(e) \downarrow\}$ Not Computable?

- Assume K were a computable set. That is, assume $\chi_K(x) = \begin{cases} 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases}$ is a computable function.
- Claim: The following function is also computable:

$$f(x) = \begin{cases} \varphi_x(x) + 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases}$$

Why? Input: x Program: If $\chi_K(x) = 1$, Then Print $\varphi_x(x) + 1$ If $\chi_K(x) = 0$, Then Print 0

Computability Theory

Domatic Numbers

An Open Question

Non-Computable Sets

Why Is $K = \{e : \varphi_e(e) \downarrow\}$ Not Computable?

• Assume K were a computable set. That is, assume

$$\chi_K(x) = \begin{cases} 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases} \text{ is a computable function.}$$

• Claim: The following function is also computable:

$$f(x) = \begin{cases} \varphi_x(x) + 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases}$$

Why? Input: x Program: If $\chi_K(x) = 1$, Then Print $\varphi_x(x) + 1$ If $\chi_K(x) = 0$, Then Print 0

Computability Theory 00000000

Domatic Numbers

An Open Question

Non-Computable Sets

Why Is $K = \{e : \varphi_e(e) \downarrow\}$ Not Computable?

• Assume K were a computable set. That is, assume $\chi_K(x) = \begin{cases} 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases} \text{ is a computable function.}$

• **Claim:** The following function is also computable:

$$f(x) = \begin{cases} \varphi_x(x) + 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases}$$

Computability Theory

Domatic Numbers

An Open Question

Non-Computable Sets

Why Is $K = \{e : \varphi_e(e) \downarrow\}$ Not Computable?

• Assume K were a computable set. That is, assume $\begin{pmatrix} 1 & \text{if } m \in K \end{pmatrix}$

$$\chi_K(x) = \begin{cases} 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases} \text{ is a computable function.}$$

• Claim: The following function is also computable:

$$f(x) = \begin{cases} \varphi_x(x) + 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases}$$

Why? Input: x
Program:
If
$$\chi_K(x) = 1$$
, Then Print $\varphi_x(x) + 1$
If $\chi_K(x) = 0$, Then Print 0
On the other hand: $f \neq \varphi_e$ for any e because:
If $a \in K$, then $f(a) = i + i + i + i = (a)$

If $e \notin K$, then $f(e) = 0 \neq \varphi_e(e)$ (because $\varphi_e(e)$ doesn't stop).

Computability Theory

Domatic Numbers

An Open Question

Non-Computable Sets

Why Is $K = \{e : \varphi_e(e) \downarrow\}$ Not Computable?

• Assume K were a computable set. That is, assume $\begin{pmatrix} 1 & \text{if } m \in K \end{pmatrix}$

$$\chi_K(x) = \begin{cases} 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases} \text{ is a computable function.}$$

• Claim: The following function is also computable:

$$f(x) = \begin{cases} \varphi_x(x) + 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases}$$

Why? Input: xProgram: If $\chi_K(x) = 1$, Then Print $\varphi_x(x) + 1$ If $\chi_K(x) = 0$, Then Print 0

On the other hand: $f \neq \varphi_e$ for any e because: If $e \in K$, then $f(e) = \varphi_e(e) + 1 \neq \varphi_e(e)$. If $e \notin K$, then $f(e) = 0 \neq \varphi_e(e)$ (because $\varphi_e(e)$ doesn't stop).

Computability Theory

Domatic Numbers

An Open Question

Non-Computable Sets

Why Is $K = \{e : \varphi_e(e) \downarrow\}$ Not Computable?

• Assume K were a computable set. That is, assume $\begin{pmatrix} 1 & \text{if } r \in K \end{pmatrix}$

$$\chi_K(x) = \begin{cases} 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases} \text{ is a computable function.}$$

• Claim: The following function is also computable:

$$f(x) = \begin{cases} \varphi_x(x) + 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases}$$

Why? Input: x Program: If $\chi_K(x) = 1$, Then Print $\varphi_x(x) + 1$ If $\chi_K(x) = 0$, Then Print 0

On the other hand: $f \neq \varphi_e$ for any e because: If $e \in K$, then $f(e) = \varphi_e(e) + 1 \neq \varphi_e(e)$. If $e \notin K$, then $f(e) = 0 \neq \varphi_e(e)$ (because $\varphi_e(e)$ doesn't stop).

Computability Theory

Domatic Numbers

An Open Question

Non-Computable Sets

Why Is $K = \{e : \varphi_e(e) \downarrow\}$ Not Computable?

- Assume K were a computable set. That is, assume $\begin{cases} 1 & \text{if } x \in K \end{cases}$
 - $\chi_K(x) = \begin{cases} 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases} \text{ is a computable function.}$
- Claim: The following function is also computable:

$$f(x) = \begin{cases} \varphi_x(x) + 1 & \text{if } x \in K \\ 0 & \text{if } x \notin K \end{cases}$$

Why? Input: x Program: If $\chi_K(x) = 1$, Then Print $\varphi_x(x) + 1$ If $\chi_K(x) = 0$, Then Print 0

On the other hand: $f \neq \varphi_e$ for any e because: If $e \in K$, then $f(e) = \varphi_e(e) + 1 \neq \varphi_e(e)$. If $e \notin K$, then $f(e) = 0 \neq \varphi_e(e)$ (because $\varphi_e(e)$ doesn't stop).

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Computability Theory

Domatic Numbers

An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but $d^{c}(G) < 3$.

The gadget of φ_e :

Springing the trap:

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Computability Theory

Domatic Numbers

An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but $d^{c}(G) < 3$.

The gadget of φ_e :

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Computability Theory

Domatic Numbers

An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but $d^{c}(G) < 3$.

The gadget of φ_e :

Springing the trap:

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Computability Theory

Domatic Numbers

An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but $d^{c}(G) < 3$.

The gadget of φ_e :

Springing the trap:

◆□▶ <圖▶ < 目▶ < 目▶ <目▶ <○○</p>

Computability Theory

Domatic Numbers

An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but $d^{c}(G) < 3$.

The gadget of φ_e :

Springing the trap:

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Computability Theory

Domatic Numbers

An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but $d^{c}(G) < 3$.

The gadget of φ_e :

Springing the trap:

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Computability Theory

Domatic Numbers

An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but $d^{c}(G) < 3$.

The gadget of φ_e :

Springing the trap:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Computability Theory

Domatic Numbers

An Open Question

(日)

Highly Computable Graphs

$d(G) - d^{c}(G)$ for Highly Computable Graphs G

Definition 2

A graph G = (V, E) is highly computable if V and E are computable sets and there is a computable function that, when given $v \in V$, outputs the degree of v (i.e., the number of vertices adjacent to v).

Theorem 1

For every $n \ge 3$, there is a highly computable graph G such that d(G) = n and $d^c(G) = n - 1$.
Self-Reference 000	Computability Theory 00000000	Domatic Numbers	An Open Question
Highly Computable Graphs			
The K_n^- -Gadget			

For every $n \ge 3$, there is a highly computable graph G such that d(G) = n and $d^c(G) = n - 1$.

Self-Reference 000	Computability Theory 00000000	Domatic Numbers	An Open Question
Highly Computable Graphs			
The K_n^- -Gadget			

For every $n \ge 3$, there is a highly computable graph G such that d(G) = n and $d^c(G) = n - 1$.

Self-Reference 000	Computability Theory 00000000	Domatic Numbers	An Open Question
Highly Computable Graphs			
The K_n^- -Gadget			

For every $n \ge 3$, there is a highly computable graph G such that d(G) = n and $d^c(G) = n - 1$.

Self-Reference	Computability Theory 00000000	Domatic Numbers ○○○○●○	An Open Question
Highly Computable Graphs			
Total Domati	ic Partitions		

Definition 3

- For any n≥1 and any graph G = (V, E), a (computable) partition p: V → {1,...,n} into n colors is a (computable) total domatic n-partition if the vertices adjacent to v use up all n colors (i.e., (∀v ∈ V)(∀i ∈ {1,...,n})(∃u ∈ V)[uEv ∧ p(u) = i]).
- The (computable) total domatic number of a graph G, denoted by d_t(G) (resp., d^c_t(G)) is the maximum n such that G has a (computable) total domatic n-partition.

Theorem 2

For every $n \ge 3$, there is a highly computable graph G such that $d_t(G) = n$ and $d_t^c(G) = n - 1$.

000 00000000	00000		
Highly Computable Graphs			
The Double K_4 -Gadget			

For every $n \ge 3$, there is a highly computable graph G such that $d_t(G) = n$ and $d_t^c(G) = n - 1$.

Self-Reference 000	Computability Theory	Domatic Numbers ○○○○○●	An Open Question
Highly Computable Graphs			
The Double K	4-Gadget		

For every $n \ge 3$, there is a highly computable graph G such that $d_t(G) = n$ and $d_t^c(G) = n - 1$.

Self-Reference 000	Computability Theory 00000000	Domatic Numbers ○○○○○●	An Open Question
Highly Computable Graphs			
The Double K	4-Gadget		

For every $n \ge 3$, there is a highly computable graph G such that $d_t(G) = n$ and $d_t^c(G) = n - 1$.

Self-Reference 000	Computability Theory	Domatic Numbers ○○○○○●	An Open Question
Highly Computable Graphs			
The Double K	4-Gadget		

For every $n \ge 3$, there is a highly computable graph G such that $d_t(G) = n$ and $d_t^c(G) = n - 1$.

Self-Reference 000	Computability Theory 00000000	Domatic Numbers ○○○○○●	An Open Question
Highly Computable Graphs			
The Double K	4-Gadget		

For every $n \ge 3$, there is a highly computable graph G such that $d_t(G) = n$ and $d_t^c(G) = n - 1$.

Domatic Numbers

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Future Research

Conjecture 1

Every highly computable graph with a domatic 4-partition has a computable domatic 3-partition.

Theorem 3

Let G be a computable k-regular graph with d(G) = k + 1. Then G has a computable domatic n-partition for all n satisfying $2^n - 1 \le k + 1$, in fact, $n^2 \le k + 1$.

Thank you.

◆□▶
◆□▶
●>

Matthew Jura, Oscar Levin, and Tyler Markkanen. Domatic partitions of computable graphs. Arch. Math. Logic, 53(1-2):137–155, 2014.

Robert I. Soare.

Computability Theorey and Applications [CTA]. under contract with Springer-Verlag, Berlin, 20?? (under revision).

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p