
Can Computers Do Math?
An Introduction to Computability Theory and

Effective Mathematics

Tyler Markkanen

Springfield College

CCSU Mathematics Department Colloquium
February 27, 2015



Self-Reference Computability Theory Domatic Numbers An Open Question

Joint with Matthew Jura and Oscar Levin.



Self-Reference Computability Theory Domatic Numbers An Open Question

Machines & Self-Reference

Consider a machine M that prints out expressions made with
five symbols:

∼, P, N, (, and ).

An expression is any non-empty finite string of symbols, e.g.,

N∼(P, )P (((((((, and P (N(∼)).

For an expression X, a sentence is any expression of the form:

P (X), PN(X), ∼P (X), or ∼PN(X).

We interpret the meaning of the symbols as follows.
P : “is printable”
∼: “not”
N : “the norm of” E.g., the norm of P∼ is P∼(P∼).



Self-Reference Computability Theory Domatic Numbers An Open Question

Telling the Truth

Rule:
The machine M can only print TRUE sentences.

Example 1

1 If M prints P (X), then X is printable. So M eventually
prints X.

2 If M prints ∼PN(X), then the norm of X, i.e., X(X), is not
printable. So M never prints X(X).

3 If M prints X, then M does not necessarily print P (X).

Question:
Can such an M print ALL true sentences?



Self-Reference Computability Theory Domatic Numbers An Open Question

You Can’t Handle the Truth!

Can such an M print ALL true sentences?

No. The following sentence is true but M will not print it:

∼PN(∼PN)

Notice:

∼PN(∼PN) is true ⇐⇒ ∼PN(∼PN) is not printable



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Sets of Natural Numbers

The set of natural numbers: N = {0,1,2,3, . . .} — countable

The subsets of N: ∅,N,
{0},{1},{2},{3}, . . . ,
{0,1},{0,2},{1,2},{0,3},{1,3},{2,3}, . . . ,
{0,1,2}, . . . ,
...
{0,2,4,6,8, . . .},{1,3,5,7,9, . . .},
{2,3,5,7,11, . . .}, . . .
... — uncountably many

(We can’t number ALL the subsets of N.)



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Sets of Natural Numbers

The set of natural numbers: N = {0,1,2,3, . . .} — countable

The subsets of N: ∅,N,
{0},{1},{2},{3}, . . . ,
{0,1},{0,2},{1,2},{0,3},{1,3},{2,3}, . . . ,
{0,1,2}, . . . ,
...
{0,2,4,6,8, . . .},{1,3,5,7,9, . . .},
{2,3,5,7,11, . . .}, . . .
... — uncountably many

(We can’t number ALL the subsets of N.)



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Sets of Natural Numbers

The set of natural numbers: N = {0,1,2,3, . . .} — countable

The subsets of N: ∅,N,
{0},{1},{2},{3}, . . . ,
{0,1},{0,2},{1,2},{0,3},{1,3},{2,3}, . . . ,
{0,1,2}, . . . ,
...
{0,2,4,6,8, . . .},{1,3,5,7,9, . . .},
{2,3,5,7,11, . . .}, . . .
... — uncountably many

(We can’t number ALL the subsets of N.)



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

What Is a Computer Program?

Example 2 (a + b)

Input: a, b
Want Output: a + b
Program:

1 s ∶= a

2 i ∶= 0
3 IF { i ≠ b

i. s ∶= s + 1
ii. i ∶= i + 1 }

4 Print s

A (computer) program is a machine with a finite list of steps
(written from a finite alphabet) that takes in a natural number
(the input), runs the steps on the input, and (if it stops running)
prints out a natural number (the output).



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

What Is a Computer Program?

Example 2 (a + b)

Input: a, b
Want Output: a + b
Program:

1 s ∶= a

2 i ∶= 0
3 IF { i ≠ b

i. s ∶= s + 1
ii. i ∶= i + 1 }

4 Print s

A (computer) program is a machine with a finite list of steps
(written from a finite alphabet) that takes in a natural number
(the input), runs the steps on the input, and (if it stops running)
prints out a natural number (the output).



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

What Is a Computer Program?

Example 2 (a + b)

Input: a, b
Want Output: a + b
Program:

1 s ∶= a

2 i ∶= 0
3 IF { i ≠ b

i. s ∶= s + 1
ii. i ∶= i + 1 }

4 Print s

A (computer) program is a machine with a finite list of steps
(written from a finite alphabet) that takes in a natural number
(the input), runs the steps on the input, and (if it stops running)
prints out a natural number (the output).



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

What Is a Computer Program?

Example 2 (a + b)

Input: a, b
Want Output: a + b
Program:

1 s ∶= a

2 i ∶= 0
3 IF { i ≠ b

i. s ∶= s + 1
ii. i ∶= i + 1 }

4 Print s

A (computer) program is a machine with a finite list of steps
(written from a finite alphabet) that takes in a natural number
(the input), runs the steps on the input, and (if it stops running)
prints out a natural number (the output).



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Programs

A computer program is a partial function f ∶ N→ N (which may
not have an output for some inputs).

Example 3 (Familiar programs)

a + b, a � b, a > b, a ⋅ b, ab, a∣b, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)

Program Name: EVENstopODDdontstop
Input: a
Program:

1 If a is EVEN, Then Print 0.

2 If a is ODD, Then Go To Step 1.

Output:
⎧
⎪⎪
⎨
⎪⎪
⎩

0, if a is even

↑ (no output), if a is odd



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Programs

A computer program is a partial function f ∶ N→ N (which may
not have an output for some inputs).

Example 3 (Familiar programs)

a + b, a � b, a > b, a ⋅ b, ab, a∣b, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)

Program Name: EVENstopODDdontstop
Input: a
Program:

1 If a is EVEN, Then Print 0.

2 If a is ODD, Then Go To Step 1.

Output:
⎧
⎪⎪
⎨
⎪⎪
⎩

0, if a is even

↑ (no output), if a is odd



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Programs

A computer program is a partial function f ∶ N→ N (which may
not have an output for some inputs).

Example 3 (Familiar programs)

a + b, a � b, a > b, a ⋅ b, ab, a∣b, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)

Program Name: EVENstopODDdontstop
Input: a
Program:

1 If a is EVEN, Then Print 0.

2 If a is ODD, Then Go To Step 1.

Output:
⎧
⎪⎪
⎨
⎪⎪
⎩

0, if a is even

↑ (no output), if a is odd



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Programs

A computer program is a partial function f ∶ N→ N (which may
not have an output for some inputs).

Example 3 (Familiar programs)

a + b, a � b, a > b, a ⋅ b, ab, a∣b, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)

Program Name: EVENstopODDdontstop
Input: a
Program:

1 If a is EVEN, Then Print 0.

2 If a is ODD, Then Go To Step 1.

Output:
⎧
⎪⎪
⎨
⎪⎪
⎩

0, if a is even

↑ (no output), if a is odd



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Programs

A computer program is a partial function f ∶ N→ N (which may
not have an output for some inputs).

Example 3 (Familiar programs)

a + b, a � b, a > b, a ⋅ b, ab, a∣b, EVEN(a), ODD(a)

Example 4 (A program where some inputs have no output)

Program Name: EVENstopODDdontstop
Input: a
Program:

1 If a is EVEN, Then Print 0.

2 If a is ODD, Then Go To Step 1.

Output:
⎧
⎪⎪
⎨
⎪⎪
⎩

0, if a is even

↑ (no output), if a is odd



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Computable Functions and Sets

Each program is a finite list of steps. So how many different
programs are there?

Only countably many (the size of N).

So we can number ALL of the programs:
ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, . . .

Definition 1

We call these ϕe the partial computable functions. If ϕe is
total (i.e., dom(ϕe) = N), we call it a computable function.

A ⊆ N is called a computable set if

χA(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ A

0 if x /∈ A

is a computable function.



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Computable Functions and Sets

Each program is a finite list of steps. So how many different
programs are there? Only countably many (the size of N).

So we can number ALL of the programs:
ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, . . .

Definition 1

We call these ϕe the partial computable functions. If ϕe is
total (i.e., dom(ϕe) = N), we call it a computable function.

A ⊆ N is called a computable set if

χA(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ A

0 if x /∈ A

is a computable function.



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Computable Functions and Sets

Each program is a finite list of steps. So how many different
programs are there? Only countably many (the size of N).

So we can number ALL of the programs:
ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, . . .

Definition 1

We call these ϕe the partial computable functions. If ϕe is
total (i.e., dom(ϕe) = N), we call it a computable function.

A ⊆ N is called a computable set if

χA(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ A

0 if x /∈ A

is a computable function.



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Computable Functions and Sets

Each program is a finite list of steps. So how many different
programs are there? Only countably many (the size of N).

So we can number ALL of the programs:
ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, . . .

Definition 1

We call these ϕe the partial computable functions. If ϕe is
total (i.e., dom(ϕe) = N), we call it a computable function.

A ⊆ N is called a computable set if

χA(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ A

0 if x /∈ A

is a computable function.



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Computable Functions and Sets

Each program is a finite list of steps. So how many different
programs are there? Only countably many (the size of N).

So we can number ALL of the programs:
ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, . . .

Definition 1

We call these ϕe the partial computable functions. If ϕe is
total (i.e., dom(ϕe) = N), we call it a computable function.

A ⊆ N is called a computable set if

χA(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ A

0 if x /∈ A

is a computable function.



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Computable Sets

Example 5

∅

because χ∅(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ ∅

0 if x /∈ ∅

= 0 (for all x)

N

because χN(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ N
0 if x /∈ N

= 1 (for all x)

A, where A is a finite set

E = {x ∶ x is even}

O = {x ∶ x is odd}

C, where C is a computable set

S = {x ∶ x is a perfect square}

P = {x ∶ x is a prime number}



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Computable Sets

Example 5

∅

because χ∅(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ ∅

0 if x /∈ ∅

= 0 (for all x)

N

because χN(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ N
0 if x /∈ N

= 1 (for all x)

A, where A is a finite set

E = {x ∶ x is even}

O = {x ∶ x is odd}

C, where C is a computable set

S = {x ∶ x is a perfect square}

P = {x ∶ x is a prime number}



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Computable Sets

Example 5

∅

because χ∅(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ ∅

0 if x /∈ ∅

= 0 (for all x)

N

because χN(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ N
0 if x /∈ N

= 1 (for all x)

A, where A is a finite set

E = {x ∶ x is even}

O = {x ∶ x is odd}

C, where C is a computable set

S = {x ∶ x is a perfect square}

P = {x ∶ x is a prime number}



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Computable Sets

Example 5

∅

because χ∅(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ ∅

0 if x /∈ ∅

= 0 (for all x)

N

because χN(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ N
0 if x /∈ N

= 1 (for all x)

A, where A is a finite set

E = {x ∶ x is even}

O = {x ∶ x is odd}

C, where C is a computable set

S = {x ∶ x is a perfect square}

P = {x ∶ x is a prime number}



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Computable Sets

Example 5

∅

because χ∅(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ ∅

0 if x /∈ ∅

= 0 (for all x)

N

because χN(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ N
0 if x /∈ N

= 1 (for all x)

A, where A is a finite set

E = {x ∶ x is even}

O = {x ∶ x is odd}

C, where C is a computable set

S = {x ∶ x is a perfect square}

P = {x ∶ x is a prime number}



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Computable Sets

Example 5

∅

because χ∅(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ ∅

0 if x /∈ ∅

= 0 (for all x)

N

because χN(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ N
0 if x /∈ N

= 1 (for all x)

A, where A is a finite set

E = {x ∶ x is even}

O = {x ∶ x is odd}

C, where C is a computable set

S = {x ∶ x is a perfect square}

P = {x ∶ x is a prime number}



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Computable Sets

Example 5

∅

because χ∅(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ ∅

0 if x /∈ ∅

= 0 (for all x)

N

because χN(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ N
0 if x /∈ N

= 1 (for all x)

A, where A is a finite set

E = {x ∶ x is even}

O = {x ∶ x is odd}

C, where C is a computable set

S = {x ∶ x is a perfect square}

P = {x ∶ x is a prime number}



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Computable Sets

Example 5

∅

because χ∅(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ ∅

0 if x /∈ ∅

= 0 (for all x)

N

because χN(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ N
0 if x /∈ N

= 1 (for all x)

A, where A is a finite set

E = {x ∶ x is even}

O = {x ∶ x is odd}

C, where C is a computable set

S = {x ∶ x is a perfect square}

P = {x ∶ x is a prime number}



Self-Reference Computability Theory Domatic Numbers An Open Question

Computable Sets

Examples of Computable Sets

Example 5

∅

because χ∅(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ ∅

0 if x /∈ ∅

= 0 (for all x)

N

because χN(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ N
0 if x /∈ N

= 1 (for all x)

A, where A is a finite set

E = {x ∶ x is even}

O = {x ∶ x is odd}

C, where C is a computable set

S = {x ∶ x is a perfect square}

P = {x ∶ x is a prime number}



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Are There Non-Computable Sets?

Are there any sets that are NOT computable?

There are only

countably

many computable sets, but

uncountably

many subsets of N.

There are many non-computable sets!

Can I see one?



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Are There Non-Computable Sets?

Are there any sets that are NOT computable?

There are only

countably

many computable sets, but

uncountably

many subsets of N.

There are many non-computable sets!

Can I see one?



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Are There Non-Computable Sets?

Are there any sets that are NOT computable?

There are only countably many computable sets, but

uncountably

many subsets of N.

There are many non-computable sets!

Can I see one?



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Are There Non-Computable Sets?

Are there any sets that are NOT computable?

There are only countably many computable sets, but
uncountably many subsets of N.

There are many non-computable sets!

Can I see one?



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Are There Non-Computable Sets?

Are there any sets that are NOT computable?

There are only countably many computable sets, but
uncountably many subsets of N.

There are many non-computable sets!

Can I see one?



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Are There Non-Computable Sets?

Are there any sets that are NOT computable?

There are only countably many computable sets, but
uncountably many subsets of N.

There are many non-computable sets!

Can I see one?



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

A Not-Computable Set

Example 6

The Halting Problem:
K = {e ∶ ϕe(e)↓}

(ϕe(e)↓ means “ϕe on input e stops running”)

What does K mean?

Say EVENstopODDdontstop is ϕ12, so e = 12. Does ϕ12(12)
stop or not stop?

It stops running. So 12 ∈K.

K is “ALL the e such that ϕe(e) stops running.”



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

A Not-Computable Set

Example 6

The Halting Problem:
K = {e ∶ ϕe(e)↓}

(ϕe(e)↓ means “ϕe on input e stops running”)

What does K mean?

Say EVENstopODDdontstop is ϕ12, so e = 12. Does ϕ12(12)
stop or not stop?

It stops running. So 12 ∈K.

K is “ALL the e such that ϕe(e) stops running.”



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

A Not-Computable Set

Example 6

The Halting Problem:
K = {e ∶ ϕe(e)↓}

(ϕe(e)↓ means “ϕe on input e stops running”)

What does K mean?

Say EVENstopODDdontstop is ϕ12, so e = 12. Does ϕ12(12)
stop or not stop?

It stops running. So 12 ∈K.

K is “ALL the e such that ϕe(e) stops running.”



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

A Not-Computable Set

Example 6

The Halting Problem:
K = {e ∶ ϕe(e)↓}

(ϕe(e)↓ means “ϕe on input e stops running”)

What does K mean?

Say EVENstopODDdontstop is ϕ12, so e = 12. Does ϕ12(12)
stop or not stop?

It stops running. So 12 ∈K.

K is “ALL the e such that ϕe(e) stops running.”



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

A Not-Computable Set

Example 6

The Halting Problem:
K = {e ∶ ϕe(e)↓}

(ϕe(e)↓ means “ϕe on input e stops running”)

What does K mean?

Say EVENstopODDdontstop is ϕ12, so e = 12. Does ϕ12(12)
stop or not stop?

It stops running. So 12 ∈K.

K is “ALL the e such that ϕe(e) stops running.”



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

A Not-Computable Set

Example 6

The Halting Problem:
K = {e ∶ ϕe(e)↓}

(ϕe(e)↓ means “ϕe on input e stops running”)

What does K mean?

Say EVENstopODDdontstop is ϕ12, so e = 12. Does ϕ12(12)
stop or not stop? It stops running. So 12 ∈K.

K is “ALL the e such that ϕe(e) stops running.”



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

A Not-Computable Set

Example 6

The Halting Problem:
K = {e ∶ ϕe(e)↓}

(ϕe(e)↓ means “ϕe on input e stops running”)

What does K mean?

Say EVENstopODDdontstop is ϕ12, so e = 12. Does ϕ12(12)
stop or not stop? It stops running. So 12 ∈K.

K is “ALL the e such that ϕe(e) stops running.”



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Why Is K = {e ∶ ϕe(e)↓} Not Computable?

Assume K were a computable set. That is, assume

χK(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈K

0 if x /∈K
is a computable function.

Claim: The following function is also computable:

f(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

ϕx(x) + 1 if x ∈K

0 if x /∈K

Why? Input: x
Program:
If χK(x) = 1, Then Print ϕx(x) + 1
If χK(x) = 0, Then Print 0

On the other hand: f ≠ ϕe for any e because:
If e ∈K, then f(e) = ϕe(e) + 1 ≠ ϕe(e).
If e /∈K, then f(e) = 0 ≠ ϕe(e) (because ϕe(e) doesn’t stop).



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Why Is K = {e ∶ ϕe(e)↓} Not Computable?

Assume K were a computable set. That is, assume

χK(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈K

0 if x /∈K
is a computable function.

Claim: The following function is also computable:

f(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

ϕx(x) + 1 if x ∈K

0 if x /∈K

Why? Input: x
Program:
If χK(x) = 1, Then Print ϕx(x) + 1
If χK(x) = 0, Then Print 0

On the other hand: f ≠ ϕe for any e because:
If e ∈K, then f(e) = ϕe(e) + 1 ≠ ϕe(e).
If e /∈K, then f(e) = 0 ≠ ϕe(e) (because ϕe(e) doesn’t stop).



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Why Is K = {e ∶ ϕe(e)↓} Not Computable?

Assume K were a computable set. That is, assume

χK(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈K

0 if x /∈K
is a computable function.

Claim: The following function is also computable:

f(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

ϕx(x) + 1 if x ∈K

0 if x /∈K

Why? Input: x
Program:
If χK(x) = 1, Then Print ϕx(x) + 1
If χK(x) = 0, Then Print 0

On the other hand: f ≠ ϕe for any e because:
If e ∈K, then f(e) = ϕe(e) + 1 ≠ ϕe(e).
If e /∈K, then f(e) = 0 ≠ ϕe(e) (because ϕe(e) doesn’t stop).



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Why Is K = {e ∶ ϕe(e)↓} Not Computable?

Assume K were a computable set. That is, assume

χK(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈K

0 if x /∈K
is a computable function.

Claim: The following function is also computable:

f(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

ϕx(x) + 1 if x ∈K

0 if x /∈K

Why? Input: x
Program:
If χK(x) = 1, Then Print ϕx(x) + 1
If χK(x) = 0, Then Print 0

On the other hand: f ≠ ϕe for any e because:
If e ∈K, then f(e) = ϕe(e) + 1 ≠ ϕe(e).
If e /∈K, then f(e) = 0 ≠ ϕe(e) (because ϕe(e) doesn’t stop).



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Why Is K = {e ∶ ϕe(e)↓} Not Computable?

Assume K were a computable set. That is, assume

χK(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈K

0 if x /∈K
is a computable function.

Claim: The following function is also computable:

f(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

ϕx(x) + 1 if x ∈K

0 if x /∈K

Why? Input: x
Program:
If χK(x) = 1, Then Print ϕx(x) + 1
If χK(x) = 0, Then Print 0

On the other hand: f ≠ ϕe for any e because:
If e ∈K, then f(e) = ϕe(e) + 1 ≠ ϕe(e).
If e /∈K, then f(e) = 0 ≠ ϕe(e) (because ϕe(e) doesn’t stop).



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Why Is K = {e ∶ ϕe(e)↓} Not Computable?

Assume K were a computable set. That is, assume

χK(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈K

0 if x /∈K
is a computable function.

Claim: The following function is also computable:

f(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

ϕx(x) + 1 if x ∈K

0 if x /∈K

Why? Input: x
Program:
If χK(x) = 1, Then Print ϕx(x) + 1
If χK(x) = 0, Then Print 0

On the other hand: f ≠ ϕe for any e because:
If e ∈K, then f(e) = ϕe(e) + 1 ≠ ϕe(e).
If e /∈K, then f(e) = 0 ≠ ϕe(e) (because ϕe(e) doesn’t stop).



Self-Reference Computability Theory Domatic Numbers An Open Question

Non-Computable Sets

Why Is K = {e ∶ ϕe(e)↓} Not Computable?

Assume K were a computable set. That is, assume

χK(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈K

0 if x /∈K
is a computable function.

Claim: The following function is also computable:

f(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

ϕx(x) + 1 if x ∈K

0 if x /∈K

Why? Input: x
Program:
If χK(x) = 1, Then Print ϕx(x) + 1
If χK(x) = 0, Then Print 0

On the other hand: f ≠ ϕe for any e because:
If e ∈K, then f(e) = ϕe(e) + 1 ≠ ϕe(e).
If e /∈K, then f(e) = 0 ≠ ϕe(e) (because ϕe(e) doesn’t stop).



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1 2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1 2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2

1

1 2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1 2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1

2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1 2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1 2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1 2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1 2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1 2

✓

No domatic 3-partition

A

B C

C

B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1 2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1 2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Domatic Partitions

Domatic 2-partition

1

2 1

1 2

✓

No domatic 3-partition

A

B C

C B

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but dc(G) < 3.

The gadget of ϕe:

A

C

B

A

→

Springing the trap:

A

C

C

B

A

?

BCB



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but dc(G) < 3.

The gadget of ϕe:

A

C

B

A →

Springing the trap:

A

C

C

B

A

?

BCB



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but dc(G) < 3.

The gadget of ϕe:

A

C

B

A →

Springing the trap:

A

C

C

B

A

?

BCB



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but dc(G) < 3.

The gadget of ϕe:

A

C

B

A →

Springing the trap:

A

C

C

B

A

?

B

CB



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but dc(G) < 3.

The gadget of ϕe:

A

C

B

A →

Springing the trap:

A

C

C

B

A

?B

C

B



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but dc(G) < 3.

The gadget of ϕe:

A

C

B

A →

Springing the trap:

AC

C

B

A

?BCB



Self-Reference Computability Theory Domatic Numbers An Open Question

Definition of Domatic Partitions and Numbers

Separating the Domatic Numbers

Example 7

There is a computable graph G such that d(G) = 3 but dc(G) < 3.

The gadget of ϕe:

A

C

B

A →

Springing the trap:

A

C

C

B

A

?BC

B



Self-Reference Computability Theory Domatic Numbers An Open Question

Highly Computable Graphs

d(G) − dc(G) for Highly Computable Graphs G

Definition 2

A graph G = (V,E) is highly computable if V and E are
computable sets and there is a computable function that, when
given v ∈ V , outputs the degree of v (i.e., the number of vertices
adjacent to v).

Theorem 1

For every n ≥ 3, there is a highly computable graph G such that
d(G) = n and dc(G) = n − 1.



Self-Reference Computability Theory Domatic Numbers An Open Question

Highly Computable Graphs

The K−

n -Gadget

Theorem 1

For every n ≥ 3, there is a highly computable graph G such that
d(G) = n and dc(G) = n − 1.

y

⋯

z

u

x
×

K−

n



Self-Reference Computability Theory Domatic Numbers An Open Question

Highly Computable Graphs

The K−

n -Gadget

Theorem 1

For every n ≥ 3, there is a highly computable graph G such that
d(G) = n and dc(G) = n − 1.

y

⋯

z

u

x
×

K−

n



Self-Reference Computability Theory Domatic Numbers An Open Question

Highly Computable Graphs

The K−

n -Gadget

Theorem 1

For every n ≥ 3, there is a highly computable graph G such that
d(G) = n and dc(G) = n − 1.

y

⋯

z

u

x
×

K−

n



Self-Reference Computability Theory Domatic Numbers An Open Question

Highly Computable Graphs

Total Domatic Partitions

Definition 3

1 For any n ≥ 1 and any graph G = (V,E), a (computable)
partition p ∶ V → {1, . . . , n} into n colors is a (computable)
total domatic n-partition if the vertices adjacent to v use
up all n colors (i.e.,
(∀v ∈ V )(∀i ∈ {1, . . . , n})(∃u ∈ V )[uEv ∧ p(u) = i]).

2 The (computable) total domatic number of a graph G,
denoted by dt(G) (resp., dct(G)) is the maximum n such that
G has a (computable) total domatic n-partition.

Theorem 2

For every n ≥ 3, there is a highly computable graph G such that
dt(G) = n and dct(G) = n − 1.



Self-Reference Computability Theory Domatic Numbers An Open Question

Highly Computable Graphs

The Double K4-Gadget

Theorem 2

For every n ≥ 3, there is a highly computable graph G such that
dt(G) = n and dct(G) = n − 1.

x z

v0

y

A

¬A

v1¬A

v2¬A

A



Self-Reference Computability Theory Domatic Numbers An Open Question

Highly Computable Graphs

The Double K4-Gadget

Theorem 2

For every n ≥ 3, there is a highly computable graph G such that
dt(G) = n and dct(G) = n − 1.

x z

v0

y

A

¬A

v1¬A

v2¬A

A



Self-Reference Computability Theory Domatic Numbers An Open Question

Highly Computable Graphs

The Double K4-Gadget

Theorem 2

For every n ≥ 3, there is a highly computable graph G such that
dt(G) = n and dct(G) = n − 1.

x z

v0

y

A

¬A

v1¬A

v2¬A

A



Self-Reference Computability Theory Domatic Numbers An Open Question

Highly Computable Graphs

The Double K4-Gadget

Theorem 2

For every n ≥ 3, there is a highly computable graph G such that
dt(G) = n and dct(G) = n − 1.

x z

v0

y

A

¬A

v1¬A

v2¬A

A



Self-Reference Computability Theory Domatic Numbers An Open Question

Highly Computable Graphs

The Double K4-Gadget

Theorem 2

For every n ≥ 3, there is a highly computable graph G such that
dt(G) = n and dct(G) = n − 1.

x z

v0

y

A

¬A

v1¬A

v2¬A

A



Self-Reference Computability Theory Domatic Numbers An Open Question

Future Research

Conjecture 1

Every highly computable graph with a domatic 4-partition has a
computable domatic 3-partition.

Theorem 3

Let G be a computable k-regular graph with d(G) = k + 1. Then G
has a computable domatic n-partition for all n satisfying
2n − 1 ≤ k + 1, in fact, n2 ≤ k + 1.



Questions?

Thank you.



Questions?

Matthew Jura, Oscar Levin, and Tyler Markkanen.
Domatic partitions of computable graphs.
Arch. Math. Logic, 53(1-2):137–155, 2014.

Robert I. Soare.
Computability Theorey and Applications [CTA].
under contract with Springer-Verlag, Berlin, 20??
(under revision).


	Self-Reference
	Computability Theory
	Computable Sets
	Non-Computable Sets

	Domatic Numbers
	Definition of Domatic Partitions and Numbers
	Highly Computable Graphs

	An Open Question
	Appendix
	Questions?


