A-Computable Graphs

Tyler Markkanen

Springfield College

NERDS 8.0 – Assumption College October 17, 2015

(ロ) (御) (君) (君) (君) 碧田 のんぺ

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [콜] 할 수 있습니다

This is joint work with Matt Jura and Oscar Levin.

Domatic number of a graph G : $d(G)$ = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G : $d^c(G) =$ the max n s.t. \overline{G} has a computable domatic n -partition K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

Domatic number of a graph G : $d(G)$ = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G : $d^c(G) =$ the max n s.t. \overline{G} has a computable domatic n -partition K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Domatic number of a graph G : $d(G)$ = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G : $d^c(G) =$ the max n s.t. \overline{G} has a computable domatic n -partition K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Domatic number of a graph G :

 $d(G)$ = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G : $d^c(G) =$ the max n s.t. \overline{G} has a computable domatic n -partition K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Domatic number of a graph G : $d(G)$ = the max n s.t. G has a domatic n-partition Computable domatic number of a graph G : $d^c(G) =$ the max n s.t. \overline{G} has a computable domatic n -partition

Domatic number of a graph G :

Domatic number of a graph G :

Domatic number of a graph G :

Domatic number of a graph G :

Domatic number of a graph G :

Domatic number of a graph G :

Domatic number of a graph G :

There is a graph $G = (V, E)$ that is computable (i.e., V and E are computable sets) with the property that $d(G) = 3$ but $d^c(G) < 3$.

 \rightarrow

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$.

The gadget of φ_e :

Springing the trap:

There is a graph $G = (V, E)$ that is computable (i.e., V and E are computable sets) with the property that $d(G) = 3$ but $d^c(G) < 3$.

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$.

The gadget of φ_e :

Springing the trap:

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

There is a graph $G = (V, E)$ that is computable (i.e., V and E are computable sets) with the property that $d(G) = 3$ but $d^c(G) < 3$.

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$.

The gadget of φ_e :

Springing the trap:

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

There is a graph $G = (V, E)$ that is computable (i.e., V and E are computable sets) with the property that $d(G) = 3$ but $d^c(G) < 3$.

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$.

The gadget of φ_e :

Springing the trap:

There is a graph $G = (V, E)$ that is computable (i.e., V and E are computable sets) with the property that $d(G) = 3$ but $d^c(G) < 3$.

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$.

The gadget of φ_e :

A $\mathcal{C}_{0}^{(n)}$ B $A \longrightarrow$ Springing the trap:

 0000

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists \circ

[The Neighborhood Function](#page-20-0)

Highly Computable Graphs

Definition 1

- \bullet A graph G is **locally finite** if every vertex has finite degree (i.e., has finitely many neighbors).
- Given a locally finite computable graph $G = (V, E)$, let N_G denote the **neighborhood function** of G , which, on input $v \in V$, outputs the (code for) the set of neighbors of v. We say that G is A-computable if $N_G \leq_T A$.

For all $n > 2$, every highly computable (i.e., Ø-computable) graph that has a domatic n-partition also has a computable domatic $(n-1)$ -partition.

[The Neighborhood Function](#page-21-0)

Highly Computable Graphs

Definition 1

- \bullet A graph G is **locally finite** if every vertex has finite degree (i.e., has finitely many neighbors).
- Given a locally finite computable graph $G = (V, E)$, let N_G denote the **neighborhood function** of G , which, on input $v \in V$, outputs the (code for) the set of neighbors of v. We say that G is A-computable if $N_G \leq_T A$.

For all $n > 2$, every highly computable (i.e., Ø-computable) graph that has a domatic n-partition also has a computable domatic $(n-1)$ -partition.

[The Neighborhood Function](#page-22-0)

Highly Computable Graphs

Definition 1

- \bullet A graph G is **locally finite** if every vertex has finite degree (i.e., has finitely many neighbors).
- Given a locally finite computable graph $G = (V, E)$, let N_G denote the **neighborhood function** of G , which, on input $v \in V$, outputs the (code for) the set of neighbors of v. We say that G is A-computable if $N_G \leq_T A$.

Conjecture 1

For all $n \geq 2$, every highly computable (i.e., \emptyset -computable) graph that has a domatic n-partition also has a computable domatic $(n-1)$ -partition.

Theorem 1 (D. Bean)

There is a computable graph that has a finite coloring but no finite computable coloring.

Every highly computable graph that has an n-coloring has a computable $(2n - 1)$ -coloring.

For any noncomputable c.e. set A , there is an A -computable graph that has a 2-coloring but no finite computable coloring.

K ロ ▶ K @ ▶ K 할 X K 할 X [활]할 (?) Q @

Theorem 1 (D. Bean)

There is a computable graph that has a finite coloring but no finite computable coloring.

Theorem 2 (J. Schmerl; H.G. Carstens and P. Päppinghaus)

Every highly computable graph that has an n-coloring has a computable $(2n - 1)$ -coloring.

For any noncomputable c.e. set A, there is an A-computable graph that has a 2-coloring but no finite computable coloring.

KO K K (F K E K E K A E K A K K K K K K K K K

Theorem 1 (D. Bean)

There is a computable graph that has a finite coloring but no finite computable coloring.

Theorem 2 (J. Schmerl; H.G. Carstens and P. Päppinghaus)

Every highly computable graph that has an n-coloring has a computable $(2n - 1)$ -coloring.

Theorem 3 (W. Gasarch and A. Lee)

For any noncomputable c.e. set A , there is an A -computable graph that has a 2-coloring but no finite computable coloring.

A[-Computable Graphs](#page-2-0) **[Generalizing Gasarch and Lee](#page-42-0)** [Another Way to Show](#page-59-0) A Exists

In this event, we additionally say L_i^e deserves attention if $a_s \leq c_i^e$ $a_s \leq c_i^e$ $a_s \leq c_i^e$. If this is the case, "spring the trap" for L_i^e .

of L_i^e so as to give L_i^e a domatic 3-partition.

In this event, we additionally say L_i^e deserves attention if $a_s \leq c_i^e$ $a_s \leq c_i^e$ $a_s \leq c_i^e$. If this is the case, "spring the trap" for L_i^e .

We say that L i **requires attention** if φ_e has converged on all of L_i^e so as to give L_i^e a domatic 3-partition.

In this event, we additionally say L_i^e deserves attention if $a_s \leq c_i^e$ $a_s \leq c_i^e$ $a_s \leq c_i^e$. If this is the case, "spring the trap" for L_i^e .

- We say that L i **uires attention** if φ_e h of L_i^e so as to give L_i^e a domatic 3-partition.
- In this event, we additionally say L_i^e deserves attention if $a_s \leq c_i^e$ $a_s \leq c_i^e$ $a_s \leq c_i^e$. If this is the case, "spring the trap" for L_i^e .

- Fix $v \in V$, and run the construction of G until we find e and i such that $v \in L_i^e$.
- Use A to find a stage t beyond which L_i^e will never change (whether or not its trap has sprung).
	- Indeed, run G out to the stages at which elements $x \leq c_i^e$ enter A , to determine if L_i^e deserves attention.
	- If L_i^e does not deserve attention by the last such stage, it never will afterward.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

- Fix $v \in V$, and run the construction of G until we find e and i such that $v \in L_i^e$.
- Use A to find a stage t beyond which L_i^e will never change (whether or not its trap has sprung).
	- Indeed, run G out to the stages at which elements $x \leq c_i^e$ enter A , to determine if L_i^e deserves attention.
	- If L_i^e does not deserve attention by the last such stage, it never will afterward.

- Fix $v \in V$, and run the construction of G until we find e and i such that $v \in L_i^e$.
- Use A to find a stage t beyond which L_i^e will never change (whether or not its trap has sprung).
	- Indeed, run G out to the stages at which elements $x \leq c_i^e$ enter A , to determine if L_i^e deserves attention.
	- If L_i^e does not deserve attention by the last such stage, it never will afterward.

- Fix $v \in V$, and run the construction of G until we find e and i such that $v \in L_i^e$.
- Use A to find a stage t beyond which L_i^e will never change (whether or not its trap has sprung).
	- Indeed, run G out to the stages at which elements $x \leq c_i^e$ enter A , to determine if L_i^e deserves attention.
	- If L_i^e does not deserve attention by the last such stage, it never will afterward.

Assume φ_e is a domatic 3-partition of G.

 \bullet Then we claim A is computable, a contradiction.

- Indeed, let $n \in \mathbb{N}$, and run G until an L_i^e appears such that $c_i^e \geq n$.
- Find the first stage t beyond this point such that $\varphi_{e,t}$ converges on L_i^e (which is unsprung).
- Since L_i^e now requires attention but will never deserve it (by assumption), $A \parallel c_i^e = A_t$.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

- Assume φ_e is a domatic 3-partition of G.
- \bullet Then we claim A is computable, a contradiction.
	- Indeed, let $n \in \mathbb{N}$, and run G until an L_i^e appears such that $c_i^e \geq n$.
	- Find the first stage t beyond this point such that $\varphi_{e,t}$ converges on L_i^e (which is unsprung).
	- Since L_i^e now requires attention but will never deserve it (by assumption), $A \parallel c_i^e = A_t$.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

- Assume φ_e is a domatic 3-partition of G.
- \bullet Then we claim A is computable, a contradiction.
	- Indeed, let $n \in \mathbb{N}$, and run G until an L_i^e appears such that $c_i^e \geq n$.
	- Find the first stage t beyond this point such that $\varphi_{e,t}$ converges on L_i^e (which is unsprung).
	- Since L_i^e now requires attention but will never deserve it (by assumption), $A \parallel c_i^e = A_t$.

- Assume φ_e is a domatic 3-partition of G.
- \bullet Then we claim A is computable, a contradiction.
	- Indeed, let $n \in \mathbb{N}$, and run G until an L_i^e appears such that $c_i^e \geq n$.
	- Find the first stage t beyond this point such that $\varphi_{e,t}$ converges on L_i^e (which is unsprung).
	- Since L_i^e now requires attention but will never deserve it (by assumption), $A \parallel c_i^e = A_t$.

- Assume φ_e is a domatic 3-partition of G.
- \bullet Then we claim A is computable, a contradiction.
	- Indeed, let $n \in \mathbb{N}$, and run G until an L_i^e appears such that $c_i^e \geq n$.
	- Find the first stage t beyond this point such that $\varphi_{e,t}$ converges on L_i^e (which is unsprung).
	- Since L_i^e now requires attention but will never deserve it (by assumption), $A \parallel c_i^e = A_t$.

- An Euler path of a graph $G = (V, E)$ is a sequence $v_0, v_1, \ldots \in V$ such that $v_i v_{i+1} \in E$ for all i and each edge in G appears exactly once in the sequence.
- A computable Euler path is a computable function f such that $f(n) = v_n$ for all $n \in \mathbb{N}$.

For any noncomputable c.e. set A, there is an A-computable graph that has an Euler path but no computable Euler path.

- An Euler path of a graph $G = (V, E)$ is a sequence $v_0, v_1, \ldots \in V$ such that $v_i v_{i+1} \in E$ for all i and each edge in G appears exactly once in the sequence.
- \bullet A computable Euler path is a computable function f such that $f(n) = v_n$ for all $n \in \mathbb{N}$.

For any noncomputable c.e. set A, there is an A-computable graph that has an Euler path but no computable Euler path.

Euler Paths

- An Euler path of a graph $G = (V, E)$ is a sequence $v_0, v_1, \ldots \in V$ such that $v_i v_{i+1} \in E$ for all i and each edge in G appears exactly once in the sequence.
- \bullet A computable Euler path is a computable function f such that $f(n) = v_n$ for all $n \in \mathbb{N}$.

Theorem 5

For any noncomputable c.e. set A , there is an A -computable graph that has an Euler path but no computable Euler path.

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists \circ

KO K K (F K E K E H E V A C K

A[-Computable Behaving Like Highly Computable](#page-42-0)

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable Δ_2^0 set A such that every finitely colorable A-computable graph has a finite computable coloring.

Requirements:

 P_e : $A \neq \varphi_e$ $\mathcal{R}_{\langle e,i,n\rangle}$: $\;$ If ψ_i is an A -computable graph, via Φ_e^A , that has an n -coloring, then it has a finite computable coloring.

Order the requirements as: $P_0 \prec R_0 \prec P_1 \prec R_1 \prec \cdots$, where lower requirements in the ordering have higher priority.

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists \circ

KO K K (F K E K E H E V A C K

A[-Computable Behaving Like Highly Computable](#page-43-0)

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable Δ_2^0 set A such that every finitely colorable A-computable graph has a finite computable coloring.

Requirements:

 \mathcal{P}_e : $A \neq \varphi_e$ $\mathcal{R}_{\langle e,i,n\rangle}$: $\;$ If ψ_i is an A -computable graph, via Φ_e^A , that has an n -coloring, then it has a finite computable coloring.

Order the requirements as: $P_0 \prec R_0 \prec P_1 \prec R_1 \prec \cdots$, where lower requirements in the ordering have higher priority.

00000000

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists \circ

A[-Computable Behaving Like Highly Computable](#page-44-0)

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable Δ_2^0 set A such that every finitely colorable A-computable graph has a finite computable coloring.

Requirements:

 \mathcal{P}_e : $A \neq \varphi_e$ $\mathcal{R}_{\langle e,i,n\rangle}$: $\;$ If ψ_i is an A -computable graph, via Φ_e^A , that has an n -coloring, then it has a finite computable coloring.

Order the requirements as: $P_0 \prec R_0 \prec P_1 \prec R_1 \prec \cdots$, where lower requirements in the ordering have higher priority.

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists \circ

KO K K (F K E K E H E V A C K

A[-Computable Behaving Like Highly Computable](#page-45-0)

Strategy for \mathcal{P}_e

\mathcal{P}_e : $A \neq \varphi_e$

• Pick an unused $x \in \mathbb{N}$ as a witness, and wait for $\varphi_e(x) \downarrow$.

• If $\varphi_e(x)\downarrow = 0$, put x into A, and issue restraint on A up to x (i.e., prevent lower priority requirements from changing the membership in A of any $y \leq x$). • If $\varphi_e(x)\downarrow\neq 0$, do nothing.

• Given $Q \prec P_e$, if Q removes x from A after P_e put it in or if, at the time P_e is putting it in, Q has issued its own restraint above x, then we say Q injures P_e . In this case, restart P_e with a new witness.

 0000

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists \circ

KO K K (F K E K E H E V A C K

A[-Computable Behaving Like Highly Computable](#page-46-0)

Strategy for \mathcal{P}_e

\mathcal{P}_e : $A \neq \varphi_e$

- Pick an unused $x \in \mathbb{N}$ as a witness, and wait for $\varphi_e(x) \downarrow$.
	- If $\varphi_e(x) \downarrow$ = 0, put x into A, and issue restraint on A up to x (i.e., prevent lower priority requirements from changing the membership in A of any $y \leq x$).

• If $\varphi_e(x) \downarrow \neq 0$, do nothing.

• Given $Q \prec P_e$, if Q removes x from A after P_e put it in or if, at the time P_e is putting it in, Q has issued its own restraint above x, then we say Q injures P_e . In this case, restart P_e with a new witness.

 0000

A[-Computable Graphs](#page-2-0) **[Generalizing Gasarch and Lee](#page-42-0)** [Another Way to Show](#page-59-0) A Exists COOO00000 \circ

KO K K (F K E K E H E V A C K

A[-Computable Behaving Like Highly Computable](#page-47-0)

Strategy for \mathcal{P}_e

\mathcal{P}_e : $A \neq \varphi_e$

- Pick an unused $x \in \mathbb{N}$ as a witness, and wait for $\varphi_e(x) \downarrow$.
	- If $\varphi_e(x) \downarrow$ = 0, put x into A, and issue restraint on A up to x (i.e., prevent lower priority requirements from changing the membership in A of any $y \leq x$). • If $\varphi_e(x) \downarrow \neq 0$, do nothing.
- Given $Q \prec P_e$, if Q removes x from A after P_e put it in or if, at the time P_e is putting it in, Q has issued its own restraint above x, then we say Q injures P_e . In this case, restart P_e with a new witness.

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists A[-Computable Behaving Like Highly Computable](#page-48-0)

Strategy for
$$
\mathcal{R}_{\langle e,i,n \rangle}
$$

KO K K (F K E K E H E V A C K

$\mathcal{R}_{\langle e,i,n\rangle \colon} \left[\Phi_e^A=N_{\psi_i}\ \&\ \chi(\psi_i)\leq n\right]\implies \chi^c(\psi_i)<\infty.$

- Initially let $V_0 = \emptyset$, and V_t be the set of vertices seen by the end of stage $t - 1$ of the strategy. At the beginning of stage t, put vertex t into V_t to ensure $\{0,\ldots,t\}\subseteq V_t.$
- Compute the set $N_{t,s}(v) = \{u \in V_t \cup \Phi_e^{A_s}(v) : \psi_i(u,v)\}$ for all $v \in V_t$, where s is the current stage of the entire construction.
- \bullet Let U_t be the set of all uncolored vertices of $V_t \cup \bigcup_{v \in V_t} N_{t,s}(v).$

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists A[-Computable Behaving Like Highly Computable](#page-49-0)

Strategy for
$$
\mathcal{R}_{\langle e,i,n \rangle}
$$

$\mathcal{R}_{\langle e,i,n\rangle \colon} \left[\Phi_e^A=N_{\psi_i}\ \&\ \chi(\psi_i)\leq n\right]\implies \chi^c(\psi_i)<\infty.$

- Initially let $V_0 = \emptyset$, and V_t be the set of vertices seen by the end of stage $t - 1$ of the strategy. At the beginning of stage t, put vertex t into V_t to ensure $\{0,\ldots,t\}\subseteq V_t.$
- Compute the set $N_{t,s}(v) = \{u \in V_t \cup \Phi_e^{A_s}(v) : \psi_i(u,v)\}$ for all $v \in V_t$, where s is the current stage of the entire construction.

KO K K (F K E K E H E V A C K

 \bullet Let U_t be the set of all uncolored vertices of $V_t \cup \bigcup_{v \in V_t} N_{t,s}(v).$

A[-Computable Graphs](#page-2-0) **[Generalizing Gasarch and Lee](#page-42-0)** [Another Way to Show](#page-59-0) A Exists and Computable Graphs on a computable comp \circ A[-Computable Behaving Like Highly Computable](#page-50-0)

Strategy for
$$
\mathcal{R}_{\langle e,i,n \rangle}
$$

$\mathcal{R}_{\langle e,i,n\rangle \colon} \left[\Phi_e^A=N_{\psi_i}\ \&\ \chi(\psi_i)\leq n\right]\implies \chi^c(\psi_i)<\infty.$

- Initially let $V_0 = \emptyset$, and V_t be the set of vertices seen by the end of stage $t - 1$ of the strategy. At the beginning of stage t, put vertex t into V_t to ensure $\{0,\ldots,t\}\subseteq V_t.$
- Compute the set $N_{t,s}(v) = \{u \in V_t \cup \Phi_e^{A_s}(v) : \psi_i(u,v)\}$ for all $v \in V_t$, where s is the current stage of the entire construction.

KO K K (F K E K E H E V A C K

 \bullet Let U_t be the set of all uncolored vertices of $V_t \cup \bigcup_{v \in V_t} N_{t,s}(v).$

A[-Computable Graphs](#page-2-0) **[Generalizing Gasarch and Lee](#page-42-0)** [Another Way to Show](#page-59-0) A Exists and Computable Graphs on a computable comp

 \circ

KO K K (F K E K E H E V A C K

A[-Computable Behaving Like Highly Computable](#page-51-0)

Strategy for
$$
\mathcal{R}_{\langle e,i,n \rangle}
$$

$\mathcal{R}_{\langle e,i,n\rangle \colon} \left[\Phi_e^A=N_{\psi_i}\ \&\ \chi(\psi_i)\leq n\right]\implies \chi^c(\psi_i)<\infty.$

- Initially let $V_0 = \emptyset$, and V_t be the set of vertices seen by the end of stage $t - 1$ of the strategy. At the beginning of stage t, put vertex t into V_t to ensure $\{0,\ldots,t\}\subseteq V_t.$
- Compute the set $N_{t,s}(v) = \{u \in V_t \cup \Phi_e^{A_s}(v) : \psi_i(u,v)\}$ for all $v \in V_t$, where s is the current stage of the entire construction.
- \bullet Let U_t be the set of all uncolored vertices of $V_t \cup \bigcup_{v \in V_t} N_{t,s}(v).$

A[-Computable Graphs](#page-2-0) **[Generalizing Gasarch and Lee](#page-42-0)** [Another Way to Show](#page-59-0) A Exists and Computable Graphs on a computable comp

 \circ

KO K K (F K E K E H E V A C K

A[-Computable Behaving Like Highly Computable](#page-52-0)

Strategy for
$$
\mathcal{R}_{\langle e,i,n \rangle}
$$

$\mathcal{R}_{\langle e,i,n\rangle \colon} \left[\Phi_e^A=N_{\psi_i}\ \&\ \chi(\psi_i)\leq n\right]\implies \chi^c(\psi_i)<\infty.$

- Initially let $V_0 = \emptyset$, and V_t be the set of vertices seen by the end of stage $t - 1$ of the strategy. At the beginning of stage t, put vertex t into V_t to ensure $\{0,\ldots,t\}\subseteq V_t.$
- Compute the set $N_{t,s}(v) = \{u \in V_t \cup \Phi_e^{A_s}(v) : \psi_i(u,v)\}$ for all $v \in V_t$, where s is the current stage of the entire construction.
- \bullet Let U_t be the set of all uncolored vertices of $V_t \cup \bigcup_{v \in V_t} N_{t,s}(v).$

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists

 \circ

A[-Computable Behaving Like Highly Computable](#page-53-0)

Strategy for $\mathcal{R}_{\langle e,i,n\rangle}$ (Cont'd)

- Color U_t with $\{1,\ldots,n\}$ or $\{n+1,\ldots,2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
	- If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the neighborhood of v . So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain \vec{A} up to the use of $\Phi_e^{A_{s'}}.$
	- If a higher priority requirement prevents us from rewinding A , then color U_t with an online procedure (i.e., use colors beyond $2n$ as needed).
- Let $V_{t+1} = V_t \cup U_t$.

A[-Computable Graphs](#page-2-0) **[Generalizing Gasarch and Lee](#page-42-0)** [Another Way to Show](#page-59-0) A Exists
 Goodbood Good Good Good Good Good Good Good \circ A[-Computable Behaving Like Highly Computable](#page-54-0) Strategy for $\mathcal{R}_{\langle e,i,n\rangle}$ (Cont'd)

- Color U_t with $\{1,\ldots,n\}$ or $\{n+1,\ldots,2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
	- If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the neighborhood of v . So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain \vec{A} up to the use of $\Phi_e^{A_{s'}}.$
	- If a higher priority requirement prevents us from rewinding A , then color U_t with an online procedure (i.e., use colors beyond $2n$ as needed).
- Let $V_{t+1} = V_t \cup U_t$.

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists \circ A[-Computable Behaving Like Highly Computable](#page-55-0) Strategy for $\mathcal{R}_{\langle e,i,n\rangle}$ (Cont'd)

- Color U_t with $\{1,\ldots,n\}$ or $\{n+1,\ldots,2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
	- If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the **neighborhood of** v . So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain \vec{A} up to the use of $\Phi_e^{A_{s'}}.$
	- If a higher priority requirement prevents us from rewinding A , then color U_t with an online procedure (i.e., use colors beyond $2n$ as needed).
- Let $V_{t+1} = V_t \cup U_t$.

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists \circ A[-Computable Behaving Like Highly Computable](#page-56-0) Strategy for $\mathcal{R}_{\langle e,i,n\rangle}$ (Cont'd)

- Color U_t with $\{1,\ldots,n\}$ or $\{n+1,\ldots,2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
	- If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the neighborhood of v . So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain A up to the use of $\Phi_e^{A_{s'}}.$
	- If a higher priority requirement prevents us from rewinding A , then color U_t with an online procedure (i.e., use colors beyond $2n$ as needed).
- Let $V_{t+1} = V_t \cup U_t$.

A[-Computable Graphs](#page-2-0) [Generalizing Gasarch and Lee](#page-42-0) [Another Way to Show](#page-59-0) A Exists 00000000 \circ A[-Computable Behaving Like Highly Computable](#page-57-0) Strategy for $\mathcal{R}_{\langle e,i,n\rangle}$ (Cont'd)

- Color U_t with $\{1,\ldots,n\}$ or $\{n+1,\ldots,2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
	- If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the neighborhood of v . So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain A up to the use of $\Phi_e^{A_{s'}}.$
	- If a higher priority requirement prevents us from rewinding A . then color U_t with an online procedure (i.e., use colors beyond $2n$ as needed).
- Let $V_{t+1} = V_t \cup U_t$.

A[-Computable Graphs](#page-2-0) **[Generalizing Gasarch and Lee](#page-42-0)** [Another Way to Show](#page-59-0) A Exists
 Goodbood Good Good Good Good Good Good Good 00000000 \circ A[-Computable Behaving Like Highly Computable](#page-58-0) Strategy for $\mathcal{R}_{\langle e,i,n\rangle}$ (Cont'd)

- Color U_t with $\{1,\ldots,n\}$ or $\{n+1,\ldots,2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
	- If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the neighborhood of v . So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain A up to the use of $\Phi_e^{A_{s'}}.$
	- If a higher priority requirement prevents us from rewinding A , then color U_t with an online procedure (i.e., use colors beyond $2n$ as needed).
- Let $V_{t+1} = V_t \cup U_t$.

A Δ^0_2 set A is **low for graph neighborhood (l.f.g.n.)** if every A-computable graph is highly computable.

No noncomputable c.e. set is l.f.g.n.

There is a noncomputable Δ_2^0 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A :

For every Δ^0_2 set A and A -computable graph G , there is a c.e. set $B \leq_T A$ such that G is B-computable.

KID KAR KE KE KE EE YAN

A Δ^0_2 set A is **low for graph neighborhood (l.f.g.n.)** if every A-computable graph is highly computable.

Corollary to Gasarch and Lee

No noncomputable c.e. set is l.f.g.n.

There is a noncomputable Δ_2^0 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A :

For every Δ^0_2 set A and A -computable graph G , there is a c.e. set $B \leq_T A$ such that G is B-computable.

KID KAR KE KE KE EE YAN

A Δ^0_2 set A is **low for graph neighborhood (l.f.g.n.)** if every A-computable graph is highly computable.

Corollary to Gasarch and Lee

No noncomputable c.e. set is l.f.g.n.

Theorem 7

There is a noncomputable Δ_2^0 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A :

For every Δ^0_2 set A and A -computable graph G , there is a c.e. set $B \leq_T A$ such that G is B-computable.

KO K K (F K E K E K A E K A K K K K K K K K K

A Δ^0_2 set A is **low for graph neighborhood (l.f.g.n.)** if every A-computable graph is highly computable.

Corollary to Gasarch and Lee

No noncomputable c.e. set is l.f.g.n.

Theorem 7

There is a noncomputable Δ_2^0 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A :

Theorem 8

For every Δ^0_2 set A and A -computable graph G , there is a c.e. set $B \leq_T A$ such that G is B-computable.

Theorem [8](#page-59-1)

For every Δ^0_2 set A and A -computable graph G , there is a c.e. set $B \leq_T A$ such that G is B-computable.

Theorem 9

The following are equivalent for A noncomputable Δ^0_2 .

- \bullet A is l.f.g.n.
- **2** Every c.e. set $B \leq_T A$ is computable.
- ³ Every A-computable graph that has a finite coloring has a finite computable coloring.
- ⁴ Every A-computable graph that has an Euler path has a computable Euler path.

KID KAR KE KE KE EE YAN

Thank you.

Dwight R. Bean.

Effective coloration.

J. Symbolic Logic, 41(2):469–480, 1976.

Dwight R. Bean.

Recursive Euler and Hamilton paths.

Proc. Amer. Math. Soc., 55(2):385–394, 1976.

N. Gasarch.

A survey of recursive combinatorics.

In Handbook of recursive mathematics, Vol. 2, volume 139 of Stud. Logic Found. Math., pages 1041–1176. North-Holland, Amsterdam, 1998.

KO K K (F K E K E K A E K A K K K K K K K K K

譶

William I. Gasarch and Andrew C. Y. Lee. On the finiteness of the recursive chromatic number. Ann. Pure Appl. Logic, 93(1-3):73–81, 1998. Computability theory.