
A-Computable Graphs

Tyler Markkanen

Springfield College

NERDS 8.0 – Assumption College
October 17, 2015



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

This is joint work with Matt Jura and Oscar Levin.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*2

*

2

12

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*2

*

2

12

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*2

*

2

12

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*

2

*

2

12

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*

2

*

2

1

2

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*

2

*

2

12

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*

2

*

2

12

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*

2

*

2

12

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*

2

*

2

12

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*

2

*

2

12

X

No domatic 3-partition

A

*

B C

C

?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*

2

*

2

12

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*

2

*

2

12

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition

*

1

*

2

*

2

12

X

No domatic 3-partition

A

*

B C

C ?

X

d(G) = 2

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
dc(G) = the max n s.t. G has a computable domatic n-partition



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Computable Graphs

Example 1

There is a graph G = (V,E) that is computable (i.e., V and E are
computable sets) with the property that d(G) = 3 but dc(G) < 3.

Let ϕ0, ϕ1, ϕ2, . . . list all partial computable functions N→ N.

The gadget of ϕe:

A

C

B

A

→

Springing the trap:

A

C

C

B

A

?

B



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Computable Graphs

Example 1

There is a graph G = (V,E) that is computable (i.e., V and E are
computable sets) with the property that d(G) = 3 but dc(G) < 3.

Let ϕ0, ϕ1, ϕ2, . . . list all partial computable functions N→ N.

The gadget of ϕe:

A

C

B

A →

Springing the trap:

A

C

C

B

A

?

B



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Computable Graphs

Example 1

There is a graph G = (V,E) that is computable (i.e., V and E are
computable sets) with the property that d(G) = 3 but dc(G) < 3.

Let ϕ0, ϕ1, ϕ2, . . . list all partial computable functions N→ N.

The gadget of ϕe:

A

C

B

A →

Springing the trap:

A

C

C

B

A

?

B



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Computable Graphs

Example 1

There is a graph G = (V,E) that is computable (i.e., V and E are
computable sets) with the property that d(G) = 3 but dc(G) < 3.

Let ϕ0, ϕ1, ϕ2, . . . list all partial computable functions N→ N.

The gadget of ϕe:

A

C

B

A →

Springing the trap:

AC

C

B

A

?B



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Computable Graphs

Example 1

There is a graph G = (V,E) that is computable (i.e., V and E are
computable sets) with the property that d(G) = 3 but dc(G) < 3.

Let ϕ0, ϕ1, ϕ2, . . . list all partial computable functions N→ N.

The gadget of ϕe:

A

C

B

A →

Springing the trap:

A

C

C

B

A

?

B



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Highly Computable Graphs

Definition 1

A graph G is locally finite if every vertex has finite degree
(i.e., has finitely many neighbors).

Given a locally finite computable graph G = (V,E), let NG

denote the neighborhood function of G, which, on input
v ∈ V , outputs the (code for) the set of neighbors of v. We
say that G is A-computable if NG ≤T A.

Conjecture 1

For all n ≥ 2, every highly computable (i.e., ∅-computable) graph
that has a domatic n-partition also has a computable domatic
(n− 1)-partition.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Highly Computable Graphs

Definition 1

A graph G is locally finite if every vertex has finite degree
(i.e., has finitely many neighbors).

Given a locally finite computable graph G = (V,E), let NG

denote the neighborhood function of G, which, on input
v ∈ V , outputs the (code for) the set of neighbors of v. We
say that G is A-computable if NG ≤T A.

Conjecture 1

For all n ≥ 2, every highly computable (i.e., ∅-computable) graph
that has a domatic n-partition also has a computable domatic
(n− 1)-partition.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Highly Computable Graphs

Definition 1

A graph G is locally finite if every vertex has finite degree
(i.e., has finitely many neighbors).

Given a locally finite computable graph G = (V,E), let NG

denote the neighborhood function of G, which, on input
v ∈ V , outputs the (code for) the set of neighbors of v. We
say that G is A-computable if NG ≤T A.

Conjecture 1

For all n ≥ 2, every highly computable (i.e., ∅-computable) graph
that has a domatic n-partition also has a computable domatic
(n− 1)-partition.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Colorings

Theorem 1 (D. Bean)

There is a computable graph that has a finite coloring but no finite
computable coloring.

Theorem 2 (J. Schmerl; H.G. Carstens and P. Päppinghaus)

Every highly computable graph that has an n-coloring has a
computable (2n− 1)-coloring.

Theorem 3 (W. Gasarch and A. Lee)

For any noncomputable c.e. set A, there is an A-computable graph
that has a 2-coloring but no finite computable coloring.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Colorings

Theorem 1 (D. Bean)

There is a computable graph that has a finite coloring but no finite
computable coloring.

Theorem 2 (J. Schmerl; H.G. Carstens and P. Päppinghaus)

Every highly computable graph that has an n-coloring has a
computable (2n− 1)-coloring.

Theorem 3 (W. Gasarch and A. Lee)

For any noncomputable c.e. set A, there is an A-computable graph
that has a 2-coloring but no finite computable coloring.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

The Neighborhood Function

Colorings

Theorem 1 (D. Bean)

There is a computable graph that has a finite coloring but no finite
computable coloring.

Theorem 2 (J. Schmerl; H.G. Carstens and P. Päppinghaus)

Every highly computable graph that has an n-coloring has a
computable (2n− 1)-coloring.

Theorem 3 (W. Gasarch and A. Lee)

For any noncomputable c.e. set A, there is an A-computable graph
that has a 2-coloring but no finite computable coloring.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Theorem 4

For any n ≥ 1 and any noncomputable c.e. set A, there is an
A-computable graph G such that d(G) = n but dc(G) < 3.

Setup for n = 3:

Gadgets for ϕe: · · ·

Let Le
i be the i-th gadget, cei = max{v : v ∈ Le

i}, and
As = {a0, . . . , as} be a computable enumeration of A.

We say that Le
i requires attention if ϕe has converged on all

of Le
i so as to give Le

i a domatic 3-partition.

In this event, we additionally say Le
i deserves attention if

as ≤ cei . If this is the case, “spring the trap” for Le
i .



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Theorem 4

For any n ≥ 1 and any noncomputable c.e. set A, there is an
A-computable graph G such that d(G) = n but dc(G) < 3.

Setup for n = 3:

Gadgets for ϕe: · · ·

Let Le
i be the i-th gadget, cei = max{v : v ∈ Le

i}, and
As = {a0, . . . , as} be a computable enumeration of A.

We say that Le
i requires attention if ϕe has converged on all

of Le
i so as to give Le

i a domatic 3-partition.

In this event, we additionally say Le
i deserves attention if

as ≤ cei . If this is the case, “spring the trap” for Le
i .



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Theorem 4

For any n ≥ 1 and any noncomputable c.e. set A, there is an
A-computable graph G such that d(G) = n but dc(G) < 3.

Setup for n = 3:

Gadgets for ϕe: · · ·

Let Le
i be the i-th gadget, cei = max{v : v ∈ Le

i}, and
As = {a0, . . . , as} be a computable enumeration of A.

We say that Le
i requires attention if ϕe has converged on all

of Le
i so as to give Le

i a domatic 3-partition.

In this event, we additionally say Le
i deserves attention if

as ≤ cei . If this is the case, “spring the trap” for Le
i .



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Theorem 4

For any n ≥ 1 and any noncomputable c.e. set A, there is an
A-computable graph G such that d(G) = n but dc(G) < 3.

Setup for n = 3:

Gadgets for ϕe: · · ·

Let Le
i be the i-th gadget, cei = max{v : v ∈ Le

i}, and
As = {a0, . . . , as} be a computable enumeration of A.

We say that Le
i requires attention if ϕe has converged on all

of Le
i so as to give Le

i a domatic 3-partition.

In this event, we additionally say Le
i deserves attention if

as ≤ cei . If this is the case, “spring the trap” for Le
i .



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Proving NG ≤T A

Fix v ∈ V , and run the construction of G until we find e and i
such that v ∈ Le

i .

Use A to find a stage t beyond which Le
i will never change

(whether or not its trap has sprung).

Indeed, run G out to the stages at which elements x ≤ cei
enter A, to determine if Le

i deserves attention.
If Le

i does not deserve attention by the last such stage, it
never will afterward.

So we will know all of the neighbors of each vertex in Le
i

(and, in particular, v) by t.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Proving NG ≤T A

Fix v ∈ V , and run the construction of G until we find e and i
such that v ∈ Le

i .

Use A to find a stage t beyond which Le
i will never change

(whether or not its trap has sprung).

Indeed, run G out to the stages at which elements x ≤ cei
enter A, to determine if Le

i deserves attention.
If Le

i does not deserve attention by the last such stage, it
never will afterward.

So we will know all of the neighbors of each vertex in Le
i

(and, in particular, v) by t.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Proving NG ≤T A

Fix v ∈ V , and run the construction of G until we find e and i
such that v ∈ Le

i .

Use A to find a stage t beyond which Le
i will never change

(whether or not its trap has sprung).

Indeed, run G out to the stages at which elements x ≤ cei
enter A, to determine if Le

i deserves attention.
If Le

i does not deserve attention by the last such stage, it
never will afterward.

So we will know all of the neighbors of each vertex in Le
i

(and, in particular, v) by t.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Proving NG ≤T A

Fix v ∈ V , and run the construction of G until we find e and i
such that v ∈ Le

i .

Use A to find a stage t beyond which Le
i will never change

(whether or not its trap has sprung).

Indeed, run G out to the stages at which elements x ≤ cei
enter A, to determine if Le

i deserves attention.
If Le

i does not deserve attention by the last such stage, it
never will afterward.

So we will know all of the neighbors of each vertex in Le
i

(and, in particular, v) by t.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Proving dc(G) < 3

Assume ϕe is a domatic 3-partition of G.

Then we claim A is computable, a contradiction.

Indeed, let n ∈ N, and run G until an Le
i appears such that

cei ≥ n.
Find the first stage t beyond this point such that ϕe,t

converges on Le
i (which is unsprung).

Since Le
i now requires attention but will never deserve it (by

assumption), A �� cei = At.
So n ∈ A ⇐⇒ n ∈ At by our choice of cei .



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Proving dc(G) < 3

Assume ϕe is a domatic 3-partition of G.

Then we claim A is computable, a contradiction.

Indeed, let n ∈ N, and run G until an Le
i appears such that

cei ≥ n.
Find the first stage t beyond this point such that ϕe,t

converges on Le
i (which is unsprung).

Since Le
i now requires attention but will never deserve it (by

assumption), A �� cei = At.
So n ∈ A ⇐⇒ n ∈ At by our choice of cei .



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Proving dc(G) < 3

Assume ϕe is a domatic 3-partition of G.

Then we claim A is computable, a contradiction.

Indeed, let n ∈ N, and run G until an Le
i appears such that

cei ≥ n.
Find the first stage t beyond this point such that ϕe,t

converges on Le
i (which is unsprung).

Since Le
i now requires attention but will never deserve it (by

assumption), A �� cei = At.
So n ∈ A ⇐⇒ n ∈ At by our choice of cei .



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Proving dc(G) < 3

Assume ϕe is a domatic 3-partition of G.

Then we claim A is computable, a contradiction.

Indeed, let n ∈ N, and run G until an Le
i appears such that

cei ≥ n.
Find the first stage t beyond this point such that ϕe,t

converges on Le
i (which is unsprung).

Since Le
i now requires attention but will never deserve it (by

assumption), A �� cei = At.
So n ∈ A ⇐⇒ n ∈ At by our choice of cei .



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Proving dc(G) < 3

Assume ϕe is a domatic 3-partition of G.

Then we claim A is computable, a contradiction.

Indeed, let n ∈ N, and run G until an Le
i appears such that

cei ≥ n.
Find the first stage t beyond this point such that ϕe,t

converges on Le
i (which is unsprung).

Since Le
i now requires attention but will never deserve it (by

assumption), A �� cei = At.
So n ∈ A ⇐⇒ n ∈ At by our choice of cei .



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Euler Paths

Definition 2

An Euler path of a graph G = (V,E) is a sequence
v0, v1, . . . ∈ V such that vivi+1 ∈ E for all i and each edge in
G appears exactly once in the sequence.

A computable Euler path is a computable function f such
that f(n) = vn for all n ∈ N.

Theorem 5

For any noncomputable c.e. set A, there is an A-computable graph
that has an Euler path but no computable Euler path.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Euler Paths

Definition 2

An Euler path of a graph G = (V,E) is a sequence
v0, v1, . . . ∈ V such that vivi+1 ∈ E for all i and each edge in
G appears exactly once in the sequence.

A computable Euler path is a computable function f such
that f(n) = vn for all n ∈ N.

Theorem 5

For any noncomputable c.e. set A, there is an A-computable graph
that has an Euler path but no computable Euler path.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

C.E.-Permitting

Euler Paths

Definition 2

An Euler path of a graph G = (V,E) is a sequence
v0, v1, . . . ∈ V such that vivi+1 ∈ E for all i and each edge in
G appears exactly once in the sequence.

A computable Euler path is a computable function f such
that f(n) = vn for all n ∈ N.

Theorem 5

For any noncomputable c.e. set A, there is an A-computable graph
that has an Euler path but no computable Euler path.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable ∆0
2 set A such that every finitely

colorable A-computable graph has a finite computable coloring.

Requirements:

Pe: A 6= ϕe

R〈e,i,n〉: If ψi is an A-computable graph, via ΦA
e , that has an

n-coloring, then it has a finite computable coloring.

Order the requirements as: P0 ≺ R0 ≺ P1 ≺ R1 ≺ · · · , where
lower requirements in the ordering have higher priority.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable ∆0
2 set A such that every finitely

colorable A-computable graph has a finite computable coloring.

Requirements:

Pe: A 6= ϕe

R〈e,i,n〉: If ψi is an A-computable graph, via ΦA
e , that has an

n-coloring, then it has a finite computable coloring.

Order the requirements as: P0 ≺ R0 ≺ P1 ≺ R1 ≺ · · · , where
lower requirements in the ordering have higher priority.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable ∆0
2 set A such that every finitely

colorable A-computable graph has a finite computable coloring.

Requirements:

Pe: A 6= ϕe

R〈e,i,n〉: If ψi is an A-computable graph, via ΦA
e , that has an

n-coloring, then it has a finite computable coloring.

Order the requirements as: P0 ≺ R0 ≺ P1 ≺ R1 ≺ · · · , where
lower requirements in the ordering have higher priority.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for Pe

Pe: A 6= ϕe

Pick an unused x ∈ N as a witness, and wait for ϕe(x)↓.
If ϕe(x)↓ = 0, put x into A, and issue restraint on A up to x
(i.e., prevent lower priority requirements from changing the
membership in A of any y ≤ x).
If ϕe(x)↓ 6= 0, do nothing.

Given Q ≺ Pe, if Q removes x from A after Pe put it in or if,
at the time Pe is putting it in, Q has issued its own restraint
above x, then we say Q injures Pe. In this case, restart Pe
with a new witness.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for Pe

Pe: A 6= ϕe

Pick an unused x ∈ N as a witness, and wait for ϕe(x)↓.
If ϕe(x)↓ = 0, put x into A, and issue restraint on A up to x
(i.e., prevent lower priority requirements from changing the
membership in A of any y ≤ x).
If ϕe(x)↓ 6= 0, do nothing.

Given Q ≺ Pe, if Q removes x from A after Pe put it in or if,
at the time Pe is putting it in, Q has issued its own restraint
above x, then we say Q injures Pe. In this case, restart Pe
with a new witness.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for Pe

Pe: A 6= ϕe

Pick an unused x ∈ N as a witness, and wait for ϕe(x)↓.
If ϕe(x)↓ = 0, put x into A, and issue restraint on A up to x
(i.e., prevent lower priority requirements from changing the
membership in A of any y ≤ x).
If ϕe(x)↓ 6= 0, do nothing.

Given Q ≺ Pe, if Q removes x from A after Pe put it in or if,
at the time Pe is putting it in, Q has issued its own restraint
above x, then we say Q injures Pe. In this case, restart Pe
with a new witness.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for R〈e,i,n〉

R〈e,i,n〉: [ΦA
e = Nψi & χ(ψi) ≤ n] =⇒ χc(ψi) <∞.

Initially let V0 = ∅, and Vt be the set of vertices seen by the
end of stage t− 1 of the strategy. At the beginning of stage t,
put vertex t into Vt to ensure {0, . . . , t} ⊆ Vt.
Compute the set Nt,s(v) = {u ∈ Vt ∪ΦAs

e (v) : ψi(u, v)} for all
v ∈ Vt, where s is the current stage of the entire construction.

Let Ut be the set of all uncolored vertices of
Vt ∪

⋃
v∈Vt

Nt,s(v).



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for R〈e,i,n〉

R〈e,i,n〉: [ΦA
e = Nψi & χ(ψi) ≤ n] =⇒ χc(ψi) <∞.

Initially let V0 = ∅, and Vt be the set of vertices seen by the
end of stage t− 1 of the strategy. At the beginning of stage t,
put vertex t into Vt to ensure {0, . . . , t} ⊆ Vt.
Compute the set Nt,s(v) = {u ∈ Vt ∪ΦAs

e (v) : ψi(u, v)} for all
v ∈ Vt, where s is the current stage of the entire construction.

Let Ut be the set of all uncolored vertices of
Vt ∪

⋃
v∈Vt

Nt,s(v).



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for R〈e,i,n〉

R〈e,i,n〉: [ΦA
e = Nψi & χ(ψi) ≤ n] =⇒ χc(ψi) <∞.

Initially let V0 = ∅, and Vt be the set of vertices seen by the
end of stage t− 1 of the strategy. At the beginning of stage t,
put vertex t into Vt to ensure {0, . . . , t} ⊆ Vt.
Compute the set Nt,s(v) = {u ∈ Vt ∪ΦAs

e (v) : ψi(u, v)} for all
v ∈ Vt, where s is the current stage of the entire construction.

Let Ut be the set of all uncolored vertices of
Vt ∪

⋃
v∈Vt

Nt,s(v).



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for R〈e,i,n〉

R〈e,i,n〉: [ΦA
e = Nψi & χ(ψi) ≤ n] =⇒ χc(ψi) <∞.

Initially let V0 = ∅, and Vt be the set of vertices seen by the
end of stage t− 1 of the strategy. At the beginning of stage t,
put vertex t into Vt to ensure {0, . . . , t} ⊆ Vt.
Compute the set Nt,s(v) = {u ∈ Vt ∪ΦAs

e (v) : ψi(u, v)} for all
v ∈ Vt, where s is the current stage of the entire construction.

Let Ut be the set of all uncolored vertices of
Vt ∪

⋃
v∈Vt

Nt,s(v).



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for R〈e,i,n〉

R〈e,i,n〉: [ΦA
e = Nψi & χ(ψi) ≤ n] =⇒ χc(ψi) <∞.

Initially let V0 = ∅, and Vt be the set of vertices seen by the
end of stage t− 1 of the strategy. At the beginning of stage t,
put vertex t into Vt to ensure {0, . . . , t} ⊆ Vt.
Compute the set Nt,s(v) = {u ∈ Vt ∪ΦAs

e (v) : ψi(u, v)} for all
v ∈ Vt, where s is the current stage of the entire construction.

Let Ut be the set of all uncolored vertices of
Vt ∪

⋃
v∈Vt

Nt,s(v).



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for R〈e,i,n〉 (Cont’d)

Color Ut with {1, . . . , n} or {n+ 1, . . . , 2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this
time, and vice versa).

If this coloring procedure is impossible, then there must be
u ∈ Ut adjacent to a previously colored v ∈ Vt. Since u is
uncolored, it was absent from an earlier version of the
neighborhood of v. So rewind A back to an earlier version As′

that computed the “wrong” neighborhood, and restrain A up

to the use of Φ
As′
e .

If a higher priority requirement prevents us from rewinding A,
then color Ut with an online procedure (i.e., use colors beyond
2n as needed).

Let Vt+1 = Vt ∪ Ut.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for R〈e,i,n〉 (Cont’d)

Color Ut with {1, . . . , n} or {n+ 1, . . . , 2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this
time, and vice versa).

If this coloring procedure is impossible, then there must be
u ∈ Ut adjacent to a previously colored v ∈ Vt. Since u is
uncolored, it was absent from an earlier version of the
neighborhood of v. So rewind A back to an earlier version As′

that computed the “wrong” neighborhood, and restrain A up

to the use of Φ
As′
e .

If a higher priority requirement prevents us from rewinding A,
then color Ut with an online procedure (i.e., use colors beyond
2n as needed).

Let Vt+1 = Vt ∪ Ut.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for R〈e,i,n〉 (Cont’d)

Color Ut with {1, . . . , n} or {n+ 1, . . . , 2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this
time, and vice versa).

If this coloring procedure is impossible, then there must be
u ∈ Ut adjacent to a previously colored v ∈ Vt. Since u is
uncolored, it was absent from an earlier version of the
neighborhood of v. So rewind A back to an earlier version As′

that computed the “wrong” neighborhood, and restrain A up

to the use of Φ
As′
e .

If a higher priority requirement prevents us from rewinding A,
then color Ut with an online procedure (i.e., use colors beyond
2n as needed).

Let Vt+1 = Vt ∪ Ut.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for R〈e,i,n〉 (Cont’d)

Color Ut with {1, . . . , n} or {n+ 1, . . . , 2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this
time, and vice versa).

If this coloring procedure is impossible, then there must be
u ∈ Ut adjacent to a previously colored v ∈ Vt. Since u is
uncolored, it was absent from an earlier version of the
neighborhood of v. So rewind A back to an earlier version As′

that computed the “wrong” neighborhood, and restrain A up

to the use of Φ
As′
e .

If a higher priority requirement prevents us from rewinding A,
then color Ut with an online procedure (i.e., use colors beyond
2n as needed).

Let Vt+1 = Vt ∪ Ut.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for R〈e,i,n〉 (Cont’d)

Color Ut with {1, . . . , n} or {n+ 1, . . . , 2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this
time, and vice versa).

If this coloring procedure is impossible, then there must be
u ∈ Ut adjacent to a previously colored v ∈ Vt. Since u is
uncolored, it was absent from an earlier version of the
neighborhood of v. So rewind A back to an earlier version As′

that computed the “wrong” neighborhood, and restrain A up

to the use of Φ
As′
e .

If a higher priority requirement prevents us from rewinding A,
then color Ut with an online procedure (i.e., use colors beyond
2n as needed).

Let Vt+1 = Vt ∪ Ut.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

A-Computable Behaving Like Highly Computable

Strategy for R〈e,i,n〉 (Cont’d)

Color Ut with {1, . . . , n} or {n+ 1, . . . , 2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this
time, and vice versa).

If this coloring procedure is impossible, then there must be
u ∈ Ut adjacent to a previously colored v ∈ Vt. Since u is
uncolored, it was absent from an earlier version of the
neighborhood of v. So rewind A back to an earlier version As′

that computed the “wrong” neighborhood, and restrain A up

to the use of Φ
As′
e .

If a higher priority requirement prevents us from rewinding A,
then color Ut with an online procedure (i.e., use colors beyond
2n as needed).

Let Vt+1 = Vt ∪ Ut.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

Letting A Be Minimal ∆2, for Example

Definition 3

A ∆0
2 set A is low for graph neighborhood (l.f.g.n.) if every

A-computable graph is highly computable.

Corollary to Gasarch and Lee

No noncomputable c.e. set is l.f.g.n.

Theorem 7

There is a noncomputable ∆0
2 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A:

Theorem 8

For every ∆0
2 set A and A-computable graph G, there is a c.e. set

B ≤T A such that G is B-computable.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

Letting A Be Minimal ∆2, for Example

Definition 3

A ∆0
2 set A is low for graph neighborhood (l.f.g.n.) if every

A-computable graph is highly computable.

Corollary to Gasarch and Lee

No noncomputable c.e. set is l.f.g.n.

Theorem 7

There is a noncomputable ∆0
2 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A:

Theorem 8

For every ∆0
2 set A and A-computable graph G, there is a c.e. set

B ≤T A such that G is B-computable.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

Letting A Be Minimal ∆2, for Example

Definition 3

A ∆0
2 set A is low for graph neighborhood (l.f.g.n.) if every

A-computable graph is highly computable.

Corollary to Gasarch and Lee

No noncomputable c.e. set is l.f.g.n.

Theorem 7

There is a noncomputable ∆0
2 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A:

Theorem 8

For every ∆0
2 set A and A-computable graph G, there is a c.e. set

B ≤T A such that G is B-computable.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

Letting A Be Minimal ∆2, for Example

Definition 3

A ∆0
2 set A is low for graph neighborhood (l.f.g.n.) if every

A-computable graph is highly computable.

Corollary to Gasarch and Lee

No noncomputable c.e. set is l.f.g.n.

Theorem 7

There is a noncomputable ∆0
2 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A:

Theorem 8

For every ∆0
2 set A and A-computable graph G, there is a c.e. set

B ≤T A such that G is B-computable.



A-Computable Graphs Generalizing Gasarch and Lee Another Way to Show A Exists

Letting A Be Minimal ∆2, for Example

Theorem 8

For every ∆0
2 set A and A-computable graph G, there is a c.e. set

B ≤T A such that G is B-computable.

Theorem 9

The following are equivalent for A noncomputable ∆0
2.

1 A is l.f.g.n.

2 Every c.e. set B ≤T A is computable.

3 Every A-computable graph that has a finite coloring has a
finite computable coloring.

4 Every A-computable graph that has an Euler path has a
computable Euler path.



Questions?

Thank you.



Dwight R. Bean.
Effective coloration.
J. Symbolic Logic, 41(2):469–480, 1976.

Dwight R. Bean.
Recursive Euler and Hamilton paths.
Proc. Amer. Math. Soc., 55(2):385–394, 1976.

W. Gasarch.
A survey of recursive combinatorics.
In Handbook of recursive mathematics, Vol. 2, volume 139 of
Stud. Logic Found. Math., pages 1041–1176. North-Holland,
Amsterdam, 1998.

William I. Gasarch and Andrew C. Y. Lee.
On the finiteness of the recursive chromatic number.
Ann. Pure Appl. Logic, 93(1-3):73–81, 1998.
Computability theory.


	A-Computable Graphs
	The Neighborhood Function
	C.E.-Permitting

	Generalizing Gasarch and Lee
	A-Computable Behaving Like Highly Computable

	Another Way to Show A Exists
	Letting A Be Minimal 2, for Example

	Appendix
	Questions?

	Appendix

