Tyler Markkanen

Springfield College

NERDS 8.0 – Assumption College October 17, 2015

A-Computable Graphs	Generalizing Gasarch and Lee	Another Way to Show A Exists
0000000	0000	

This is joint work with Matt Jura and Oscar Levin.

A-Computable Graphs ●0000000	Generalizing Gasarch and Lee 0000	Another Way to Show A Exists 00
The Neighborhood Function		
Domatic Partitions		
Domatic 2-partition		

A-Computable Graphs ●0000000	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
Domatic Partitions		
Domatic 2-partition		

<i>A</i> -Computable Graphs ●0000000	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
Domatic Partitions		
Domatic 2-partition		

<i>A</i> -Computable Graphs ●0000000	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
Domatic Partitions		
Domatic 2-partition		

A-Computable Graphs ●0000000	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
Domatic Partitions		
Domatic 2-partition		

A-Computable Graphs ●00000000	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
Domatic Partitions		

A-Computable Graphs ●00000000	Generalizing Gasarch and Lee 0000	Another Way to Show A Exists 00
The Neighborhood Function		
Domatic Partitions		

A-Computable Graphs ●00000000	Generalizing Gasarch and Lee 0000	Another Way to Show A Exists 00
The Neighborhood Function		
Domatic Partitions		

<i>A</i> -Computable Graphs ●0000000	Generalizing Gasarch and Lee 0000	Another Way to Show A Exists 00
The Neighborhood Function		
Domatic Partitions		

A-Computable Graphs ●0000000	Generalizing Gasarch and Lee 0000	Another Way to Show A Exists 00
The Neighborhood Function		
Domatic Partitions		

Domatic number of a graph G:

d(G) = the max *n* s.t. *G* has a domatic *n*-partition

Computable domatic number of a graph G: $d^c(G) =$ the max n s.t. G has a computable domatic n-partition

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

A-Computable Graphs ○●○○○○○○	Generalizing Gasarch and Lee 0000	Another Way to Show A Exists
The Neighborhood Function		
Computable Graphs		

There is a graph G = (V, E) that is computable (i.e., V and E are computable sets) with the property that d(G) = 3 but $d^c(G) < 3$.

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$.

The gadget of φ_e :

Springing the trap:

A-Computable Graphs ○●○○○○○○	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
Computable Graphs		

There is a graph G = (V, E) that is computable (i.e., V and E are computable sets) with the property that d(G) = 3 but $d^c(G) < 3$.

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙

A-Computable Graphs ○●○○○○○○	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
Computable Graphs		

There is a graph G = (V, E) that is computable (i.e., V and E are computable sets) with the property that d(G) = 3 but $d^c(G) < 3$.

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$.

The gadget of φ_e :

 $C \bullet A$

Springing the trap:

A-Computable Graphs ○●○○○○○○	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
Computable Graphs		

There is a graph G = (V, E) that is computable (i.e., V and E are computable sets) with the property that d(G) = 3 but $d^c(G) < 3$.

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$.

The gadget of φ_e :

Springing the trap:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A-Computable Graphs ○●○○○○○○	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
Computable Graphs		

There is a graph G = (V, E) that is computable (i.e., V and E are computable sets) with the property that d(G) = 3 but $d^c(G) < 3$.

Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ list all partial computable functions $\mathbb{N} \to \mathbb{N}$.

The gadget of φ_e :

Springing the trap:

Generalizing Gasarch and Lee

Another Way to Show A Exists $_{\rm OO}$

The Neighborhood Function

Highly Computable Graphs

Definition 1

- A graph G is **locally finite** if every vertex has finite degree (i.e., has finitely many neighbors).
- Given a locally finite computable graph G = (V, E), let N_G denote the **neighborhood function** of G, which, on input v ∈ V, outputs the (code for) the set of neighbors of v. We say that G is A-computable if N_G ≤_T A.

Conjecture 1

For all $n \ge 2$, every highly computable (i.e., \emptyset -computable) graph that has a domatic *n*-partition also has a computable domatic (n-1)-partition.

Generalizing Gasarch and Lee

Another Way to Show A Exists $_{\rm OO}$

The Neighborhood Function

Highly Computable Graphs

Definition 1

- A graph G is **locally finite** if every vertex has finite degree (i.e., has finitely many neighbors).
- Given a locally finite computable graph G = (V, E), let N_G denote the neighborhood function of G, which, on input v ∈ V, outputs the (code for) the set of neighbors of v. We say that G is A-computable if N_G ≤_T A.

Conjecture 1

For all $n \ge 2$, every highly computable (i.e., \emptyset -computable) graph that has a domatic *n*-partition also has a computable domatic (n-1)-partition.

Generalizing Gasarch and Lee

Another Way to Show A Exists 00

The Neighborhood Function

Highly Computable Graphs

Definition 1

- A graph G is **locally finite** if every vertex has finite degree (i.e., has finitely many neighbors).
- Given a locally finite computable graph G = (V, E), let N_G denote the neighborhood function of G, which, on input v ∈ V, outputs the (code for) the set of neighbors of v. We say that G is A-computable if N_G ≤_T A.

Conjecture 1

For all $n \ge 2$, every highly computable (i.e., \emptyset -computable) graph that has a domatic *n*-partition also has a computable domatic (n-1)-partition.

A-Computable Graphs 000●0000	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
Colorings		

Theorem 1 (D. Bean)

There is a computable graph that has a finite coloring but no finite computable coloring.

Theorem 2 (J. Schmerl; H.G. Carstens and P. Päppinghaus)

Every highly computable graph that has an *n*-coloring has a computable (2n - 1)-coloring.

Theorem 3 (W. Gasarch and A. Lee)

For any noncomputable c.e. set A, there is an A-computable graph that has a 2-coloring but no finite computable coloring.

A-Computable Graphs 000●0000	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
Colorings		

Theorem 1 (D. Bean)

There is a computable graph that has a finite coloring but no finite computable coloring.

Theorem 2 (J. Schmerl; H.G. Carstens and P. Päppinghaus)

Every highly computable graph that has an n-coloring has a computable (2n - 1)-coloring.

Theorem 3 (W. Gasarch and A. Lee)

For any noncomputable c.e. set A, there is an A-computable graph that has a 2-coloring but no finite computable coloring.

<i>A</i> -Computable Graphs 000●0000	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
The Neighborhood Function		
C 1 1		

Theorem 1 (D. Bean)

Colorings

There is a computable graph that has a finite coloring but no finite computable coloring.

Theorem 2 (J. Schmerl; H.G. Carstens and P. Päppinghaus)

Every highly computable graph that has an *n*-coloring has a computable (2n - 1)-coloring.

Theorem 3 (W. Gasarch and A. Lee)

For any noncomputable c.e. set A, there is an A-computable graph that has a 2-coloring but no finite computable coloring.

A-Computable Graphs $000000000000000000000000000000000000$	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
C.EPermitting		
Theorem 4		
For any $n \ge 1$ and A -computable grap	any noncomputable c.e. h G such that $d(G) = n$	set A , there is an but $d^c(G) < 3$.
Setup for $n = 3$:		
Gadgets for $arphi$		• • • • • • • • • • • • • • • • • • • •
• Let L_i^e be the $A_s = \{a_0, \dots, \}$ • We say that L_i^e	i -th gadget, $c^e_i = \max\{v_i a_s\}$ be a computable end i requires attention if q	$v:v\in L^e_i\}$, and umeration of $A.$ $arphi_e$ has converged on all

of L_i^e so as to give L_i^e a domatic 3-partition

• In this event, we additionally say L_i^e deserves attention if $a_s \leq c_i^e$. If this is the case, "spring the trap" for L_i^e .

A-Computable Graphs ○○○○●○○○	Generalizing Gasard	h and Lee	Another Way to Show A Exists 00	
C.EPermitting				
Theorem 4				
For any $n \ge 1$ and an A -computable graph	y noncompu G such that	table c.e. set $d(G) = n$ be	: A , there is an it $d^c(G) < 3$.	
Setup for $n = 3$:				
Gadgets for φ_e :	\bigoplus	$\overset{\bullet}{\longleftrightarrow}$	•••••	

- Let L_i^e be the *i*-th gadget, $c_i^e = \max\{v : v \in L_i^e\}$, and $A_s = \{a_0, \ldots, a_s\}$ be a computable enumeration of A.
- We say that L_i^e requires attention if φ_e has converged on all of L_i^e so as to give L_i^e a domatic 3-partition.
- In this event, we additionally say L_i^e deserves attention if $a_s \leq c_i^e$. If this is the case, "spring the trap" for L_i^e .

A-Computable Graphs ○○○○●○○○	Generalizing Gasarc	h and Lee	Another Way to Show A Exist 00	
C.EPermitting				
Theorem 4				
For any $n \ge 1$ and an A -computable graph	ny noncompu G such that	table c.e. set $d(G) = n$ b	t A , there is an ut $d^c(G) < 3$.	
Setup for $n = 3$:				
Gadgets for φ_e :	\leftarrow	\leftarrow	•••••	

- Let L_i^e be the *i*-th gadget, $c_i^e = \max\{v : v \in L_i^e\}$, and $A_s = \{a_0, \dots, a_s\}$ be a computable enumeration of A.
- We say that L_i^e requires attention if φ_e has converged on all of L_i^e so as to give L_i^e a domatic 3-partition.

• In this event, we additionally say L_i^e deserves attention if $a_s \leq c_i^e$. If this is the case, "spring the trap" for L_i^e .

A-Computable Graphs ○○○○●○○○	Generalizing Gasard	h and Lee	Another Way to Show A Ex 00	
C.EPermitting				
Theorem 4				
For any $n \ge 1$ and an A -computable graph	ny noncompu G such that	table c.e. set $d(G) = n$ b	t A , there is an ut $d^c(G) < 3$.	
Setup for $n = 3$:				
Gadgets for $arphi_e$:	\leftarrow	\leftarrow		

- Let L_i^e be the *i*-th gadget, $c_i^e = \max\{v : v \in L_i^e\}$, and $A_s = \{a_0, \dots, a_s\}$ be a computable enumeration of A.
- We say that L_i^e requires attention if φ_e has converged on all of L_i^e so as to give L_i^e a domatic 3-partition.
- In this event, we additionally say L_i^e deserves attention if $a_s \leq c_i^e$. If this is the case, "spring the trap" for L_i^e .

- Fix $v \in V$, and run the construction of G until we find e and i such that $v \in L_i^e$.
- Use A to find a stage t beyond which L_i^e will never change (whether or not its trap has sprung).
 - Indeed, run G out to the stages at which elements $x \le c_i^e$ enter A, to determine if L_i^e deserves attention.
 - If L_i^e does not deserve attention by the last such stage, it never will afterward.

- Fix $v \in V$, and run the construction of G until we find e and i such that $v \in L_i^e$.
- Use A to find a stage t beyond which L_i^e will never change (whether or not its trap has sprung).
 - Indeed, run G out to the stages at which elements $x \leq c_i^e$ enter A, to determine if L_i^e deserves attention.
 - If L_i^e does not deserve attention by the last such stage, it never will afterward.

- Fix $v \in V$, and run the construction of G until we find e and i such that $v \in L_i^e$.
- Use A to find a stage t beyond which L_i^e will never change (whether or not its trap has sprung).
 - Indeed, run G out to the stages at which elements $x \le c_i^e$ enter A, to determine if L_i^e deserves attention.
 - If L_i^e does not deserve attention by the last such stage, it never will afterward.

- Fix $v \in V$, and run the construction of G until we find e and i such that $v \in L_i^e$.
- Use A to find a stage t beyond which L_i^e will never change (whether or not its trap has sprung).
 - Indeed, run G out to the stages at which elements $x \le c_i^e$ enter A, to determine if L_i^e deserves attention.
 - If L_i^e does not deserve attention by the last such stage, it never will afterward.

A-Computable Graphs ○○○○○○●○ Generalizing Gasarch and Lee

Another Way to Show A Exists 00

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

C.E.-Permitting

Proving $d^c(G) < 3$

- Assume φ_e is a domatic 3-partition of G.
- Then we claim A is computable, a contradiction.
 - Indeed, let $n \in \mathbb{N}$, and run G until an L_i^e appears such that $c_i^e \geq n$.
 - Find the first stage t beyond this point such that φ_{e,t} converges on L^e_i (which is unsprung).
 - Since L_i^e now requires attention but will never deserve it (by assumption), $A \parallel c_i^e = A_t$.
 - So $n \in A \iff n \in A_t$ by our choice of c_i^e .

A-Computable Graphs	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
C.EPermitting		
Proving $d^c(G) < 3$		

- Assume φ_e is a domatic 3-partition of G.
- $\bullet\,$ Then we claim A is computable, a contradiction.
 - Indeed, let $n\in\mathbb{N},$ and run G until an L^e_i appears such that $c^e_i\geq n.$
 - Find the first stage t beyond this point such that $\varphi_{e,t}$ converges on L_i^e (which is unsprung).
 - Since L_i^e now requires attention but will never deserve it (by assumption), $A \parallel c_i^e = A_t$.

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

A-Computable Graphs ○○○○○○●○	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
C.EPermitting		
Proving $d^c(G) < 3$	3	

- Assume φ_e is a domatic 3-partition of G.
- Then we claim A is computable, a contradiction.
 - Indeed, let $n \in \mathbb{N}$, and run G until an L_i^e appears such that $c_i^e \geq n$.
 - Find the first stage t beyond this point such that $\varphi_{e,t}$ converges on L_i^e (which is unsprung).
 - Since L_i^e now requires attention but will never deserve it (by assumption), $A \parallel c_i^e = A_t$.

A-Computable Graphs ○○○○○○●○	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
C.EPermitting		
Proving $d^{c}(G) <$	3	

- Assume φ_e is a domatic 3-partition of G.
- Then we claim A is computable, a contradiction.
 - Indeed, let $n\in\mathbb{N},$ and run G until an L^e_i appears such that $c^e_i\geq n.$
 - Find the first stage t beyond this point such that $\varphi_{e,t}$ converges on L_i^e (which is unsprung).
 - Since L_i^e now requires attention but will never deserve it (by assumption), $A \parallel c_i^e = A_t$.

A-Computable Graphs ○○○○○○●○	Generalizing Gasarch and Lee	Another Way to Show A Exists 00
C.EPermitting		
Proving $d^{c}(G) <$	< 3	

- Assume φ_e is a domatic 3-partition of G.
- Then we claim A is computable, a contradiction.
 - Indeed, let $n\in\mathbb{N},$ and run G until an L^e_i appears such that $c^e_i\geq n.$
 - Find the first stage t beyond this point such that $\varphi_{e,t}$ converges on L_i^e (which is unsprung).
 - Since L_i^e now requires attention but will never deserve it (by assumption), $A \parallel c_i^e = A_t$.

A-Computable	Graphs
00000000	

C.E.-Permitting

Euler Paths

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition 2

- An Euler path of a graph G = (V, E) is a sequence $v_0, v_1, \ldots \in V$ such that $v_i v_{i+1} \in E$ for all i and each edge in G appears exactly once in the sequence.
- A computable Euler path is a computable function f such that $f(n) = v_n$ for all $n \in \mathbb{N}$.

Theorem 5

For any noncomputable c.e. set A, there is an A-computable graph that has an Euler path but no computable Euler path.

A-Computable	Graphs
00000000	

Euler Paths

C.E.-Permitting

Generalizing Gasarch and Lee

Another Way to Show A Exists $_{\rm OO}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition 2

- An Euler path of a graph G = (V, E) is a sequence $v_0, v_1, \ldots \in V$ such that $v_i v_{i+1} \in E$ for all i and each edge in G appears exactly once in the sequence.
- A computable Euler path is a computable function f such that $f(n) = v_n$ for all $n \in \mathbb{N}$.

Theorem 5

For any noncomputable c.e. set A, there is an A-computable graph that has an Euler path but no computable Euler path.

A-Computable	Graphs
00000000	

Generalizing Gasarch and Lee

Another Way to Show A Exists $_{\rm OO}$

C.E.-Permitting

Euler Paths

Definition 2

- An Euler path of a graph G = (V, E) is a sequence $v_0, v_1, \ldots \in V$ such that $v_i v_{i+1} \in E$ for all i and each edge in G appears exactly once in the sequence.
- A computable Euler path is a computable function f such that $f(n) = v_n$ for all $n \in \mathbb{N}$.

Theorem 5

For any noncomputable c.e. set A, there is an A-computable graph that has an Euler path but no computable Euler path.

Generalizing Gasarch and Lee $_{\odot OOO}$

Another Way to Show A Exists $_{\rm OO}$

A-Computable Behaving Like Highly Computable

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable Δ_2^0 set A such that every finitely colorable A-computable graph has a finite computable coloring.

Requirements:

 $\begin{array}{ll} \mathcal{P}_e: & A \neq \varphi_e \\ \mathcal{R}_{\langle e,i,n \rangle}: & \text{If } \psi_i \text{ is an } A \text{-computable graph, via } \Phi_e^A \text{, that has an} \\ & n \text{-coloring, then it has a finite computable coloring.} \end{array}$

Order the requirements as: $\mathcal{P}_0 \prec \mathcal{R}_0 \prec \mathcal{P}_1 \prec \mathcal{R}_1 \prec \cdots$, where lower requirements in the ordering have higher priority.

Generalizing Gasarch and Lee $_{\odot OOO}$

Another Way to Show A Exists 00

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

A-Computable Behaving Like Highly Computable

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable Δ_2^0 set A such that every finitely colorable A-computable graph has a finite computable coloring.

Requirements:

 $\begin{array}{ll} \mathcal{P}_e & A \neq \varphi_e \\ \mathcal{R}_{\langle e,i,n \rangle} & \text{ If } \psi_i \text{ is an } A \text{-computable graph, via } \Phi_e^A \text{, that has an} \\ n \text{-coloring, then it has a finite computable coloring.} \end{array}$

Order the requirements as: $\mathcal{P}_0 \prec \mathcal{R}_0 \prec \mathcal{P}_1 \prec \mathcal{R}_1 \prec \cdots$, where lower requirements in the ordering have higher priority.

Generalizing Gasarch and Lee $_{\odot OOO}$

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable Δ_2^0 set A such that every finitely colorable A-computable graph has a finite computable coloring.

Requirements:

 $\begin{array}{ll} \mathcal{P}_e & \quad A \neq \varphi_e \\ \mathcal{R}_{\langle e,i,n \rangle} & \quad \text{If } \psi_i \text{ is an } A \text{-computable graph, via } \Phi_e^A \text{, that has an} \\ n \text{-coloring, then it has a finite computable coloring.} \end{array}$

Order the requirements as: $\mathcal{P}_0 \prec \mathcal{R}_0 \prec \mathcal{P}_1 \prec \mathcal{R}_1 \prec \cdots$, where lower requirements in the ordering have higher priority.

Generalizing Gasarch and Lee $0 \bullet 00$

Another Way to Show A Exists 00

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A-Computable Behaving Like Highly Computable

Strategy for \mathcal{P}_e

$\mathcal{P}_e: A \neq \varphi_e$

• Pick an unused $x \in \mathbb{N}$ as a witness, and wait for $\varphi_e(x) \downarrow$.

If φ_e(x)↓ = 0, put x into A, and issue restraint on A up to x (i.e., prevent lower priority requirements from changing the membership in A of any y ≤ x).
If φ_e(x)↓ ≠ 0, do nothing.

 Given Q ≺ P_e, if Q removes x from A after P_e put it in or if, at the time P_e is putting it in, Q has issued its own restraint above x, then we say Q injures P_e. In this case, restart P_e with a new witness.

Generalizing Gasarch and Lee 0000

Another Way to Show A Exists 00

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A-Computable Behaving Like Highly Computable

Strategy for \mathcal{P}_e

$\mathcal{P}_e: A \neq \varphi_e$

- Pick an unused $x \in \mathbb{N}$ as a witness, and wait for $\varphi_e(x) \downarrow$.
 - If φ_e(x)↓ = 0, put x into A, and issue restraint on A up to x (i.e., prevent lower priority requirements from changing the membership in A of any y ≤ x).

• If $\varphi_e(x) \downarrow \neq 0$, do nothing.

Given Q ≺ P_e, if Q removes x from A after P_e put it in or if, at the time P_e is putting it in, Q has issued its own restraint above x, then we say Q injures P_e. In this case, restart P_e with a new witness.

Generalizing Gasarch and Lee $0 \bullet 00$

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

Strategy for \mathcal{P}_e

$\mathcal{P}_e: A \neq \varphi_e$

- Pick an unused $x \in \mathbb{N}$ as a witness, and wait for $\varphi_e(x) \downarrow$.
 - If φ_e(x)↓ = 0, put x into A, and issue restraint on A up to x (i.e., prevent lower priority requirements from changing the membership in A of any y ≤ x).

• If $\varphi_e(x) \downarrow \neq 0$, do nothing.

Given Q ≺ P_e, if Q removes x from A after P_e put it in or if, at the time P_e is putting it in, Q has issued its own restraint above x, then we say Q injures P_e. In this case, restart P_e with a new witness.

Generalizing Gasarch and Lee 0000

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

Strategy for
$$\mathcal{R}_{\langle e,i,n
angle}$$

$\left[\mathcal{R}_{\langle e,i,n angle} \colon \left[\Phi^A_e = N_{\psi_i} \ \& \ \chi(\psi_i) \leq n ight] \implies \chi^c(\psi_i) < \infty.$

- Initially let $V_0 = \emptyset$, and V_t be the set of vertices seen by the end of stage t 1 of the strategy. At the beginning of stage t, put vertex t into V_t to ensure $\{0, \ldots, t\} \subseteq V_t$.
- Compute the set $N_{t,s}(v) = \{u \in V_t \cup \Phi_e^{A_s}(v) : \psi_i(u,v)\}$ for all $v \in V_t$, where s is the current stage of the entire construction.
- Let U_t be the set of all uncolored vertices of $V_t \cup \bigcup_{v \in V_t} N_{t,s}(v)$.

Generalizing Gasarch and Lee 0000

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

Strategy for
$$\mathcal{R}_{\langle e,i,n
angle}$$

- Initially let V₀ = Ø, and V_t be the set of vertices seen by the end of stage t − 1 of the strategy. At the beginning of stage t, put vertex t into V_t to ensure {0,...,t} ⊆ V_t.
- Compute the set $N_{t,s}(v) = \{u \in V_t \cup \Phi_e^{A_s}(v) : \psi_i(u,v)\}$ for all $v \in V_t$, where s is the current stage of the entire construction.
- Let U_t be the set of all uncolored vertices of $V_t \cup \bigcup_{v \in V_t} N_{t,s}(v)$.

Generalizing Gasarch and Lee 0000

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

Strategy for
$$\mathcal{R}_{\langle e,i,n
angle}$$

- Initially let $V_0 = \emptyset$, and V_t be the set of vertices seen by the end of stage t 1 of the strategy. At the beginning of stage t, put vertex t into V_t to ensure $\{0, \ldots, t\} \subseteq V_t$.
- Compute the set $N_{t,s}(v) = \{u \in V_t \cup \Phi_e^{A_s}(v) : \psi_i(u,v)\}$ for all $v \in V_t$, where s is the current stage of the entire construction.
- Let U_t be the set of all uncolored vertices of $V_t \cup \bigcup_{v \in V_t} N_{t,s}(v)$.

Generalizing Gasarch and Lee 0000

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

Strategy for
$$\mathcal{R}_{\langle e,i,n
angle}$$

- Initially let $V_0 = \emptyset$, and V_t be the set of vertices seen by the end of stage t 1 of the strategy. At the beginning of stage t, put vertex t into V_t to ensure $\{0, \ldots, t\} \subseteq V_t$.
- Compute the set $N_{t,s}(v) = \{u \in V_t \cup \Phi_e^{A_s}(v) : \psi_i(u,v)\}$ for all $v \in V_t$, where s is the current stage of the entire construction.
- Let U_t be the set of all uncolored vertices of $V_t \cup \bigcup_{v \in V_t} N_{t,s}(v)$.

Generalizing Gasarch and Lee 0000

Another Way to Show A Exists 00

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A-Computable Behaving Like Highly Computable

Strategy for
$$\mathcal{R}_{\langle e,i,n
angle}$$

- Initially let $V_0 = \emptyset$, and V_t be the set of vertices seen by the end of stage t 1 of the strategy. At the beginning of stage t, put vertex t into V_t to ensure $\{0, \ldots, t\} \subseteq V_t$.
- Compute the set $N_{t,s}(v) = \{u \in V_t \cup \Phi_e^{A_s}(v) : \psi_i(u,v)\}$ for all $v \in V_t$, where s is the current stage of the entire construction.
- Let U_t be the set of all uncolored vertices of $V_t \cup \bigcup_{v \in V_t} N_{t,s}(v)$.

Generalizing Gasarch and Lee $_{\text{OOO}}\bullet$

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

- Color U_t with $\{1, \ldots, n\}$ or $\{n + 1, \ldots, 2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
 - If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the neighborhood of v. So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain A up to the use of $\Phi_e^{A_{s'}}$.
 - If a higher priority requirement prevents us from rewinding A, then color U_t with an *online* procedure (i.e., use colors beyond 2n as needed).
- Let $V_{t+1} = V_t \cup U_t$.

Generalizing Gasarch and Lee $_{\text{OOO}}\bullet$

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

- Color U_t with $\{1, \ldots, n\}$ or $\{n + 1, \ldots, 2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
 - If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the neighborhood of v. So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain A up to the use of $\Phi_e^{A_{s'}}$.
 - If a higher priority requirement prevents us from rewinding A, then color U_t with an *online* procedure (i.e., use colors beyond 2n as needed).
- Let $V_{t+1} = V_t \cup U_t$.

Generalizing Gasarch and Lee $_{\text{OOO}}\bullet$

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

- Color U_t with $\{1, \ldots, n\}$ or $\{n + 1, \ldots, 2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
 - If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the neighborhood of v. So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain A up to the use of $\Phi_e^{A_{s'}}$.
 - If a higher priority requirement prevents us from rewinding A, then color U_t with an *online* procedure (i.e., use colors beyond 2n as needed).
- Let $V_{t+1} = V_t \cup U_t$.

Generalizing Gasarch and Lee $_{\text{OOO}}\bullet$

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

- Color U_t with $\{1, \ldots, n\}$ or $\{n + 1, \ldots, 2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
 - If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the neighborhood of v. So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain A up to the use of $\Phi_e^{A_{s'}}$.
 - If a higher priority requirement prevents us from rewinding A, then color U_t with an *online* procedure (i.e., use colors beyond 2n as needed).
- Let $V_{t+1} = V_t \cup U_t$.

Generalizing Gasarch and Lee 0000

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

- Color U_t with $\{1, \ldots, n\}$ or $\{n + 1, \ldots, 2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
 - If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the neighborhood of v. So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain A up to the use of $\Phi_e^{A_{s'}}$.
 - If a higher priority requirement prevents us from rewinding A, then color U_t with an *online* procedure (i.e., use colors beyond 2n as needed).
- Let $V_{t+1} = V_t \cup U_t$.

Generalizing Gasarch and Lee 0000

Another Way to Show A Exists 00

A-Computable Behaving Like Highly Computable

- Color U_t with $\{1, \ldots, n\}$ or $\{n + 1, \ldots, 2n\}$ alternatively (i.e., if we used the 1st set last time, then use the 2nd set this time, and vice versa).
 - If this coloring procedure is impossible, then there must be $u \in U_t$ adjacent to a previously colored $v \in V_t$. Since u is uncolored, it was absent from an earlier version of the neighborhood of v. So rewind A back to an earlier version $A_{s'}$ that computed the "wrong" neighborhood, and restrain A up to the use of $\Phi_e^{A_{s'}}$.
 - If a higher priority requirement prevents us from rewinding A, then color U_t with an *online* procedure (i.e., use colors beyond 2n as needed).
- Let $V_{t+1} = V_t \cup U_t$.

A-Computable Graphs	Generalizing Gasarch and Lee	Another Way to Show A Exists $\bullet \circ$
Letting A Be Minimal Δ_2 , for Example		

A Δ_2^0 set A is **low for graph neighborhood (l.f.g.n.)** if every A-computable graph is highly computable.

Corollary to Gasarch and Lee

No noncomputable c.e. set is l.f.g.n.

Theorem 7

There is a noncomputable Δ_2^0 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A:

Theorem 8

For every Δ_2^0 set A and A-computable graph G, there is a c.e. set $B \leq_T A$ such that G is B-computable.

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

A-Computable Graphs 00000000	Generalizing Gasarch and Lee	Another Way to Show <i>A</i> Exists ●○
Letting A Be Minimal Δ_2 , for Example		

A Δ_2^0 set A is **low for graph neighborhood (l.f.g.n.)** if every A-computable graph is highly computable.

Corollary to Gasarch and Lee

No noncomputable c.e. set is l.f.g.n.

Theorem 7

There is a noncomputable Δ_2^0 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A:

Theorem 8

For every Δ_2^0 set A and A-computable graph G, there is a c.e. set $B \leq_T A$ such that G is B-computable.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□= のへ⊙

A-Computable Graphs	Generalizing Gasarch and Lee 0000	Another Way to Show <i>A</i> Exists ●○
Letting A Be Minimal Δ_2 , for Example		

A Δ_2^0 set A is **low for graph neighborhood (l.f.g.n.)** if every A-computable graph is highly computable.

Corollary to Gasarch and Lee

No noncomputable c.e. set is l.f.g.n.

Theorem 7

There is a noncomputable Δ_2^0 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A:

Theorem 8

For every Δ_2^0 set A and A-computable graph G, there is a c.e. set $B \leq_T A$ such that G is B-computable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A-Computable Graphs	Generalizing Gasarch and Lee	Another Way to Show <i>A</i> Exists ●0
Letting A Be Minimal Δ_2 , for Example		

A Δ_2^0 set A is **low for graph neighborhood (l.f.g.n.)** if every A-computable graph is highly computable.

Corollary to Gasarch and Lee

No noncomputable c.e. set is l.f.g.n.

Theorem 7

There is a noncomputable Δ_2^0 set A that is l.f.g.n.

Below is an alternative method for showing the existence of A:

Theorem 8

For every Δ_2^0 set A and A-computable graph G, there is a c.e. set $B \leq_T A$ such that G is B-computable.

A-Computable Graphs	Generalizing Gasarch and Lee	Another Way to Show A Exists $\circ \bullet$
Letting A Be Minimal Δ_2 , for Example		

Theorem 8

For every Δ_2^0 set A and A-computable graph G, there is a c.e. set $B \leq_T A$ such that G is B-computable.

Theorem 9

The following are equivalent for A noncomputable Δ_2^0 .

- *A* is *l*.f.g.n.
- **2** Every c.e. set $B \leq_T A$ is computable.
- Every A-computable graph that has a finite coloring has a finite computable coloring.
- Every A-computable graph that has an Euler path has a computable Euler path.

Thank you.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dwight R. Bean.

Effective coloration.

J. Symbolic Logic, 41(2):469–480, 1976.

Dwight R. Bean.

Recursive Euler and Hamilton paths.

Proc. Amer. Math. Soc., 55(2):385-394, 1976.

W. Gasarch.

A survey of recursive combinatorics.

In *Handbook of recursive mathematics, Vol. 2*, volume 139 of *Stud. Logic Found. Math.*, pages 1041–1176. North-Holland, Amsterdam, 1998.

William I. Gasarch and Andrew C. Y. Lee. On the finiteness of the recursive chromatic number. *Ann. Pure Appl. Logic*, 93(1-3):73–81, 1998. Computability theory.