A-Computable Graphs

Tyler Markkanen

Springfield College

NERDS 8.0 — Assumption College
October 17, 2015

This is joint work with Matt Jura and Oscar Levin.

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition No domatic 3-partition

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition No domatic 3-partition

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition No domatic 3-partition

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition No domatic 3-partition

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition No domatic 3-partition

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition No domatic 3-partition

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

Domatic 2-partition No domatic 3-partition

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

No domatic 3-partition

Domatic 2-partition
A

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

No domatic 3-partition

Domatic 2-partition
A

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

No domatic 3-partition

Domatic 2-partition
A

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

No domatic 3-partition

Domatic 2-partition
A

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

No domatic 3-partition

Domatic 2-partition
A

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
®000

The Neighborhood Function

Domatic Partitions

Domatic 2-partition

No domatic 3-partition

Domatic 2-partition
A

1

Domatic number of a graph G:
d(G) = the max n s.t. G has a domatic n-partition

Computable domatic number of a graph G:
d°(G) = the max n s.t. G has a computable domatic n-partition

A-Computable Graphs
0e00
The Neighborhood Function

Computable Graphs

There is a graph G = (V, E) that is computable (i.e., V and E are
computable sets) with the property that d(G) = 3 but d°(G) < 3.

Let g, @1, @2, ... list all partial computable functions N — N.

The gadget of .:

A-Computable Graphs
0e00
The Neighborhood Function

Computable Graphs

There is a graph G = (V, E) that is computable (i.e., V and E are
computable sets) with the property that d(G) = 3 but d°(G) < 3.

Let g, @1, @2, ... list all partial computable functions N — N.

The gadget of .:
B

A-Computable Graphs
0e00
The Neighborhood Function

Computable Graphs

There is a graph G = (V, E) that is computable (i.e., V and E are
computable sets) with the property that d(G) = 3 but d°(G) < 3.

Let g, @1, @2, ... list all partial computable functions N — N.
Springing the trap:

The gadget of .:
B

B

A-Computable Graphs
0e00
The Neighborhood Function

Computable Graphs

There is a graph G = (V, E) that is computable (i.e., V and E are
computable sets) with the property that d(G) = 3 but d°(G) < 3.

Let g, @1, @2, ... list all partial computable functions N — N.

The gadget of .: Springing the trap:

B

A-Computable Graphs
0e00
The Neighborhood Function

Computable Graphs

There is a graph G = (V, E) that is computable (i.e., V and E are
computable sets) with the property that d(G) = 3 but d°(G) < 3.

Let g, @1, @2, ... list all partial computable functions N — N.
Springing the trap:

The gadget of .:
B

B

A-Computable Graphs
coeo
The Neighborhood Function

Highly Computable Graphs

@ A graph G is locally finite if every vertex has finite degree

(i.e., has finitely many neighbors).

A-Computable Graphs
coeo

The Neighborhood Function

Highly Computable Graphs

@ A graph G is locally finite if every vertex has finite degree
(i.e., has finitely many neighbors).

e Given a locally finite computable graph G = (V, E), let Ng
denote the neighborhood function of GG, which, on input
v € V, outputs the (code for) the set of neighbors of v. We
say that G is A-computable if Ng <7 A.)

A-Computable Graphs
coeo

The Neighborhood Function

Highly Computable Graphs

@ A graph G is locally finite if every vertex has finite degree
(i.e., has finitely many neighbors).

e Given a locally finite computable graph G = (V, E), let Ng
denote the neighborhood function of GG, which, on input
v € V, outputs the (code for) the set of neighbors of v. We
say that G is A-computable if Ng <7 A.

Conjecture 1

For all n. > 2, every highly computable (i.e.,)-computable) graph
that has a domatic n-partition also has a computable domatic

(n — 1)-partition.

| \

A-Computable Graphs
ocooe
The Neighborhood Function

Colorings

Theorem 1 (D. Bean)
There is a computable graph that has a finite coloring but no finite

computable coloring.

A-Computable Graphs
ocooe

The Neighborhood Function

Colorings

Theorem 1 (D. Bean)
There is a computable graph that has a finite coloring but no finite

computable coloring.

Theorem 2 (J. Schmerl; H.G. Carstens and P. Pappinghaus)

Every highly computable graph that has an n-coloring has a
computable (2n — 1)-coloring.

A-Computable Graphs
ocooe

The Neighborhood Function

Colorings

Theorem 1 (D. Bean)
There is a computable graph that has a finite coloring but no finite
computable coloring.

Theorem 2 (J. Schmerl; H.G. Carstens and P. Pappinghaus)

Every highly computable graph that has an n-coloring has a
computable (2n — 1)-coloring.

A\

Theorem 3 (W. Gasarch and A. Lee)

For any noncomputable c.e. set A, there is an A-computable graph
that has a 2-coloring but no finite computable coloring.

v

A-Computable Graphs
®000

C.E.-Permitting

Theorem 4

For any n > 1 and any noncomputable c.e. set A, there is an
A-computable graph G such that d(G) = n but d°(G) < 3.

A-Computable Graphs
®000

C.E.-Permitting

Theorem 4

For any n > 1 and any noncomputable c.e. set A, there is an
A-computable graph G such that d(G) = n but d°(G) < 3.

Setup for n = 3:

Gadgets for @,:

o Let Lf be the i-th gadget, ¢f = max{v:v € L{}, and
As = {ap,...,as} be a computable enumeration of A.

A-Computable Graphs
®000

C.E.-Permitting

Theorem 4

For any n > 1 and any noncomputable c.e. set A, there is an
A-computable graph G such that d(G) = n but d°(G) < 3.

Setup for n = 3:

Gadgets for @,:

o Let LY be the i-th gadget, ¢f = max{v:v € L}, and
As = {ap,...,as} be a computable enumeration of A.

o We say that L{ requires attention if p. has converged on all
of LY so as to give L§ a domatic 3-partition.

A-Computable Graphs
®000

C.E.-Permitting

Theorem 4

For any n > 1 and any noncomputable c.e. set A, there is an
A-computable graph G such that d(G) = n but d°(G) < 3.

Setup for n = 3:

Gadgets for @,:

o Let LY be the i-th gadget, ¢f = max{v:v € L}, and
As = {ap,...,as} be a computable enumeration of A.

o We say that L{ requires attention if p. has converged on all
of LY so as to give L§ a domatic 3-partition.

@ In this event, we additionally say L{ deserves attention if
as < cf. If this is the case, “spring the trap” for LY.

A-Computable Graphs
0®00

C.E.-Permitting

Proving Ng <1 A

@ Fix v € V, and run the construction of G until we find e and ¢
such that v € L§.

A-Computable Graphs
0®00

C.E.-Permitting

Proving Ng <1 A

@ Fix v € V, and run the construction of G until we find e and
such that v € L§.

@ Use A to find a stage t beyond which L will never change
(whether or not its trap has sprung).

o Indeed, run G out to the stages at which elements 2 < ¢f
enter A, to determine if L§ deserves attention.

A-Computable Graphs
0®00

C.E.-Permitting

Proving Ng <1 A

@ Fix v € V, and run the construction of G until we find e and ¢
such that v € L§.

@ Use A to find a stage t beyond which L will never change
(whether or not its trap has sprung).
o Indeed, run G out to the stages at which elements 2 < ¢f
enter A, to determine if L§ deserves attention.
o If LY does not deserve attention by the last such stage, it
never will afterward.

A-Computable Graphs
0®00

C.E.-Permitting

Proving Ng <1 A

@ Fix v € V, and run the construction of G until we find e and
such that v € L§.

@ Use A to find a stage t beyond which L will never change
(whether or not its trap has sprung).

o Indeed, run G out to the stages at which elements 2 < ¢f
enter A, to determine if L§ deserves attention.

o If LY does not deserve attention by the last such stage, it
never will afterward.

@ So we will know all of the neighbors of each vertex in L§
(and, in particular, v) by t.

A-Computable Graphs
feYe] Yo)

C.E.-Permitting

Proving d°(G) < 3

@ Assume ¢, is a domatic 3-partition of G.

A-Computable Graphs
feYe] Yo)

C.E.-Permitting

Proving d°(G) < 3

@ Assume ¢, is a domatic 3-partition of G.
@ Then we claim A is computable, a contradiction.

o Indeed, let n € N, and run G until an L§ appears such that
cf > n.

A-Computable Graphs
feYe] Yo)

C.E.-Permitting

Proving d°(G) < 3

@ Assume ¢, is a domatic 3-partition of G.
@ Then we claim A is computable, a contradiction.
o Indeed, let n € N, and run G until an L§ appears such that
cf > n.
o Find the first stage ¢ beyond this point such that ¢, +
converges on L¢ (which is unsprung).

A-Computable Graphs
feYe] Yo)

C.E.-Permitting

Proving d°(G) < 3

@ Assume ¢, is a domatic 3-partition of G.
@ Then we claim A is computable, a contradiction.

o Indeed, let n € N, and run G until an L§ appears such that
cf > n.

o Find the first stage ¢ beyond this point such that ¢, +
converges on L¢ (which is unsprung).

e Since L now requires attention but will never deserve it (by
assumption), A [| ¢¢ = A;.

A-Computable Graphs
feYe] Yo)

C.E.-Permitting

Proving d°(G) < 3

@ Assume ¢, is a domatic 3-partition of G.
@ Then we claim A is computable, a contradiction.

o Indeed, let n € N, and run G until an L§ appears such that
cf > n.

o Find the first stage ¢ beyond this point such that ¢, +
converges on L¢ (which is unsprung).

e Since L now requires attention but will never deserve it (by
assumption), A [| ¢¢ = A;.

e Sone€ A < n e A; by our choice of cf.

A-Computable Graphs
ocooe

C.E.-Permitting

Euler Paths

@ An Euler path of a graph G = (V, E) is a sequence
Vo, V1, ... € V such that v;v;41 € F for all ¢ and each edge in
G appears exactly once in the sequence.

A-Computable Graphs
ocooe

C.E.-Permitting

Euler Paths

@ An Euler path of a graph G = (V, E) is a sequence
Vo, V1, ... € V such that v;v;41 € F for all ¢ and each edge in
G appears exactly once in the sequence.

@ A computable Euler path is a computable function f such
that f(n) = v, for all n € N.

A-Computable Graphs
ocooe

C.E.-Permitting

Euler Paths

@ An Euler path of a graph G = (V, E) is a sequence
Vo, V1, ... € V such that v;v;41 € F for all ¢ and each edge in
G appears exactly once in the sequence.

@ A computable Euler path is a computable function f such
that f(n) = v, for all n € N.

v

For any noncomputable c.e. set A, there is an A-computable graph
that has an Euler path but no computable Euler path.

4

Generalizing Gasarch and Lee
®000

A-Computable Behaving Like Highly Computable

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable A set A such that every finitely
colorable A-computable graph has a finite computable coloring.

Generalizing Gasarch and Lee
®000

A-Computable Behaving Like Highly Computable

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable A set A such that every finitely
colorable A-computable graph has a finite computable coloring.

Requirements:

Pe: A # e
Rieimy: I 1;is an A-computable graph, via 4, that has an
n-coloring, then it has a finite computable coloring.

Generalizing Gasarch and Lee
®000

A-Computable Behaving Like Highly Computable

Counterexample to a Generalization of Gasarch and Lee

Theorem 6

There is a noncomputable A set A such that every finitely
colorable A-computable graph has a finite computable coloring.

Requirements:

Pe: A # e
Rieimy: I 1;is an A-computable graph, via 4, that has an
n-coloring, then it has a finite computable coloring.

Order the requirements as: Py < Rg < P1 < R1 < -+, where
lower requirements in the ordering have higher priority.

Generalizing Gasarch and Lee
oeo00

A-Computable Behaving Like Highly Computable

Strategy for P,

@ Pick an unused = € N as a witness, and wait for ¢.(x).

Generalizing Gasarch and Lee
oeo00

A-Computable Behaving Like Highly Computable

Strategy for P,

@ Pick an unused = € N as a witness, and wait for ¢.(x).

o If pe(z)] =0, put z into A, and issue restraint on A up to z
(i-e., prevent lower priority requirements from changing the
membership in A of any y <).

o If we(z)] # 0, do nothing.

Generalizing Gasarch and Lee
oeo00

A-Computable Behaving Like Highly Computable

Strategy for P,

@ Pick an unused = € N as a witness, and wait for ¢.(x).

o If pe(z)] =0, put z into A, and issue restraint on A up to z
(i-e., prevent lower priority requirements from changing the
membership in A of any y <).

o If we(z)] # 0, do nothing.

o Given Q < P, if Q removes = from A after P, put it in or if,
at the time P, is putting it in, Q has issued its own restraint

above x, then we say Q injures Pe. In this case, restart P,
with a new witness.

Generalizing Gasarch and Lee
ocoeo

A-Computable Behaving Like Highly Computable

Strategy for R(c,i,n)

Ricimy [BA = Ny, & x(¢;) < n] = x°(¢;) < oo.

Generalizing Gasarch and Lee
ocoeo

A-Computable Behaving Like Highly Computable

Strategy for R(c,i,n)

Ricimy [BA = Ny, & x(¢;) < n] = x°(¢;) < oo.

o Initially let V5 = 0, and V; be the set of vertices seen by the
end of stage t — 1 of the strategy.

Generalizing Gasarch and Lee
ocoeo

A-Computable Behaving Like Highly Computable

Strategy for R(c,i,n)

Ricimy [BA = Ny, & x(¢;) < n] = x°(¢;) < oo.

o Initially let V5 = 0, and V; be the set of vertices seen by the
end of stage t — 1 of the strategy. At the beginning of stage ¢,
put vertex ¢ into V; to ensure {0,...,t} C V.

Generalizing Gasarch and Lee
ocoeo

A-Computable Behaving Like Highly Computable

Strategy for R(c,i,n)

Rie,iny: [B8 = Ny, & x(1i) < n] = x°() < oo
o Initially let V5 = 0, and V; be the set of vertices seen by the
end of stage t — 1 of the strategy. At the beginning of stage ¢,
put vertex ¢ into V; to ensure {0,...,t} C V.
o Compute the set N; ¢(v) = {u € VU@ (v) : 9;(u,v)} for all
v € V;, where s is the current stage of the entire construction.

Generalizing Gasarch and Lee
ocoeo

A-Computable Behaving Like Highly Computable

Strategy for R(c,i,n)

Ricimy [BA = Ny, & x(¢;) < n] = x°(¢;) < oo.

o Initially let V5 = 0, and V; be the set of vertices seen by the
end of stage t — 1 of the strategy. At the beginning of stage ¢,
put vertex ¢ into V; to ensure {0,...,t} C V.

o Compute the set N; ¢(v) = {u € VU@ (v) : 9;(u,v)} for all
v € V;, where s is the current stage of the entire construction.

@ Let U; be the set of all uncolored vertices of
Ve UlUyey, Nes(v).

Generalizing Gasarch and Lee
ocooe

A-Computable Behaving Like Highly Computable

Strategy for Re,i,n) (Cont'd)

e Color Uy with {1,...,n} or {n+1,...,2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this
time, and vice versa).

Generalizing Gasarch and Lee
ocooe

A-Computable Behaving Like Highly Computable

Strategy for Re,i,n) (Cont'd)

e Color Uy with {1,...,n} or {n+1,...,2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this
time, and vice versa).

o If this coloring procedure is impossible, then there must be
u € Uy adjacent to a previously colored v € V;.

Generalizing Gasarch and Lee
ocooe

A-Computable Behaving Like Highly Computable

Strategy for Re,i,n) (Cont'd)

e Color Uy with {1,...,n} or {n+1,...,2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this
time, and vice versa).

o If this coloring procedure is impossible, then there must be
u € U, adjacent to a previously colored v € V;. Since u is
uncolored, it was absent from an earlier version of the
neighborhood of v.

Generalizing Gasarch and Lee
ocooe

A-Computable Behaving Like Highly Computable

Strategy for Re,i,n) (Cont'd)

e Color Uy with {1,...,n} or {n+1,...,2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this

time, and vice versa).

o If this coloring procedure is impossible, then there must be
u € U, adjacent to a previously colored v € V;. Since u is
uncolored, it was absent from an earlier version of the
neighborhood of v. So rewind A back to an earlier version A,/
that computed the “wrong” neighborhood, and restrain A up

to the use of @;45/.

Generalizing Gasarch and Lee
ocooe

A-Computable Behaving Like Highly Computable

Strategy for Re,i,n) (Cont'd)

e Color Uy with {1,...,n} or {n+1,...,2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this
time, and vice versa).

o If this coloring procedure is impossible, then there must be
u € U, adjacent to a previously colored v € V;. Since u is
uncolored, it was absent from an earlier version of the
neighborhood of v. So rewind A back to an earlier version A,/
that computed the “wrong” neighborhood, and restrain A up
to the use of ®L*' .

o If a higher priority requirement prevents us from rewinding A,
then color U; with an online procedure (i.e., use colors beyond
2n as needed).

Generalizing Gasarch and Lee
ocooe

A-Computable Behaving Like Highly Computable

Strategy for Re,i,n) (Cont'd)

e Color Uy with {1,...,n} or {n+1,...,2n} alternatively (i.e.,
if we used the 1st set last time, then use the 2nd set this
time, and vice versa).

o If this coloring procedure is impossible, then there must be
u € U, adjacent to a previously colored v € V;. Since u is
uncolored, it was absent from an earlier version of the
neighborhood of v. So rewind A back to an earlier version A,/
that computed the “wrong” neighborhood, and restrain A up
to the use of ®L*' .

o If a higher priority requirement prevents us from rewinding A,
then color U; with an online procedure (i.e., use colors beyond
2n as needed).

@ Let Vigr =V UUs.

Another Way to Show A Exists
°0

Letting A Be Minimal Ao, for Example

Definition 3

A AY set A is low for graph neighborhood (I.f.g.n.) if every
A-computable graph is highly computable.

Another Way to Show A Exists
°0

Letting A Be Minimal Ao, for Example

Definition 3

A AY set A is low for graph neighborhood (I.f.g.n.) if every
A-computable graph is highly computable.

Corollary to Gasarch and Lee
No noncomputable c.e. set is I.f.g.n.

Another Way to Show A Exists
°0

Letting A Be Minimal Ag, for Example

Definition 3

A AY set A is low for graph neighborhood (I.f.g.n.) if every
A-computable graph is highly computable.

Corollary to Gasarch and Lee
No noncomputable c.e. set is I.f.g.n.

There is a noncomputable A set A that is I.f.g.n.

Below is an alternative method for showing the existence of A:

Another Way to Show A Exists
°0

Letting A Be Minimal Ao, for Example

Definition 3

A AY set A is low for graph neighborhood (I.f.g.n.) if every
A-computable graph is highly computable.

Corollary to Gasarch and Lee
No noncomputable c.e. set is I.f.g.n.

There is a noncomputable A set A that is I.f.g.n.

Below is an alternative method for showing the existence of A:

Theorem 8

For every AY set A and A-computable graph G, there is a c.e. set
B <p A such that G is B-computable.

Another Way to Show A Exists
oe

Letting A Be Minimal Ao, for Example

Theorem 8

For every AY set A and A-computable graph G, there is a c.e. set
B <7 A such that G is B-computable.

Theorem 9

The following are equivalent for A noncomputable AY.
Q Aislfgn.
@ Every c.e. set B <1 A is computable.

© Every A-computable graph that has a finite coloring has a
finite computable coloring.

@ Every A-computable graph that has an Euler path has a
computable Euler path.

Thank you.

[d Dwight R. Bean.
Effective coloration.
J. Symbolic Logic, 41(2):469-480, 1976.

[§ Dwight R. Bean.
Recursive Euler and Hamilton paths.
Proc. Amer. Math. Soc., 55(2):385-394, 1976.

[W. Gasarch.
A survey of recursive combinatorics.
In Handbook of recursive mathematics, Vol. 2, volume 139 of
Stud. Logic Found. Math., pages 1041-1176. North-Holland,
Amsterdam, 1998.

[William |. Gasarch and Andrew C. Y. Lee.
On the finiteness of the recursive chromatic number.
Ann. Pure Appl. Logic, 93(1-3):73-81, 1998.
Computability theory.

	A-Computable Graphs
	The Neighborhood Function
	C.E.-Permitting

	Generalizing Gasarch and Lee
	A-Computable Behaving Like Highly Computable

	Another Way to Show A Exists
	Letting A Be Minimal 2, for Example

	Appendix
	Questions?

	Appendix

