There Are Two Errors in the the Title of This Talk

Aristo Aristo

Ele

Tyler Markkanen

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the $1\#$ Programming Language
•0			

The tooth fairy is real.

Ø Both of these sentences are false.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the $1\#$ Programming Language
00	00000	000	

The set of all sets that are not elements of themselves

The smallest natural number not definable in less than twelve words

John is reading this sentence.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the $1\#$ Programming Language
00	00000		

The set of all sets that are not elements of themselves

The smallest natural number not definable in less than twelve words

John is reading this sentence.

<□> <</p>
<□> <</p>
□> <</p>
□> <</p>
□> <</p>
□>
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the $1\#$ Programming Language
00	00000		

The set of all sets that are not elements of themselves

The smallest natural number not definable in less than twelve words

John is reading this sentence.

<□> <</p>
<□> <</p>
□> <</p>
□> <</p>
□> <</p>
□>
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the $1\#$ Programming Language
00			

The set of all sets that are not elements of themselves

The smallest natural number not definable in less than twelve words

John is reading this sentence.

Self-Re 00	eference	John Is Reading This Sentence. ●0000	I Want the Truth! 000	Computability Theory & the $1\#$ Programming Language
	Dofin	ition		
	Denn	Ition		
	The	quotation of P is		
			" P "	
	_			
	Exam	ple		
	Let I	^o be:		
			Hello Wor	Ы
	The o	quotation of P is:		
			"Hello Wor	ld!"

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the $1\#$ Programming Language
	0000		

John is reading "John is reading"

John is reading "John is reading "John is reading""
 (This only says John is reading sent. 1, not sent. 2.)

John is reading "John is reading "John is reading ...

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the 1# Programming Language
	0000		

John is reading "John is reading"

 John is reading "John is reading "John is reading"" (This only says John is reading sent. 1, not sent. 2.)

John is reading "John is reading "John is reading ...

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the 1# Programming Language
	0000		

John is reading "John is reading"

 John is reading "John is reading "John is reading"" (This only says John is reading sent. 1, not sent. 2.)

John is reading "John is reading "John is reading ...

Self-Reference	John Is Reading This Sentence. 00●00	I Want the Truth! 000	Computability Theory & the $1\#$ Programming Language

<□> <</p>
<□> <</p>
□> <</p>
□> <</p>
□> <</p>
□>
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

Self-Reference	John Is Reading This Sentence.	I Want the Truth! 000	Computability Theory & the $1\#$ Programming Language

Consider the following sentence:

John is reading the norm of "John is reading the norm of"

Why it says that John is reading that very sentence:

The norm of

John is reading the norm of

is

John is reading the norm of "John is reading the norm of"

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the $1\#$ Programming Language
00	00000	000	

Write a sentence asserting that John is reading the norm of that very sentence.

Notation Help

J	John is reading
J" J "	John is reading "John is reading"
N``J"	the norm of "John is reading"
JN"JN"	John is reading the norm of "John is reading the norm of"

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶ ◆○ ◆

Machines & Self-Reference

• Consider a machine ${\cal M}$ that prints out expressions made with five symbols:

$$\sim, P, N, (, \text{ and }).$$

• An expression is any non-empty finite string of symbols, e.g.,

$$N \sim (P,)P(((((((, and $P(N(\sim))).$$$

• For an expression X, a sentence is any expression of the form:

$$P(X), PN(X), \sim P(X), \text{ or } \sim PN(X).$$

- We interpret the meaning of the symbols as follows.
 - P: "is printable"
 - $\sim: \text{``not''}$
 - N: "the norm of," e.g., the norm of $P{\sim}$ is $P{\sim}(P{\sim})$

Telling the Truth

Rule:

The machine M can only print TRUE sentences.

Example

• If M prints P(X), then X is printable. So M will print X.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

• If M prints X, then M does not necessarily print P(X).

Question:

Can M print EVERY true sentence?

You Can't Handle the Truth!

Can such an M print ALL true sentences?

No. The following sentence is true but M will not print it:

 $\sim PN(\sim PN)$

This is because of the following fact:

 $\sim PN(\sim PN)$ is true $\iff \sim PN(\sim PN)$ is not printable

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the $1\#$ Programming Language
00	00000		

The 1# Programming Language on Register Machines

Designed by Larry Moss, Indiana University Bloomington

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the $1\#$ Programming Language

Write a sentence asserting that John is reading the norm of that very sentence.

<□> <</p>
<□> <</p>
□> <</p>
□> <</p>
□> <</p>
□>
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the $1\#$ Programming Language

Write a sentence asserting that John is reading the norm of that very sentence.

Answer

JNN"JNN" The norm of

JNN

is

JNN"JNN"

(1)

So our original sentence asserts that John is reading the norm of (1), i.e., the norm of our original sentence.

Self-Reference	John Is Reading This Sentence.	I Want the Truth!	Computability Theory & the 1# Programming Language

Write an expression that names its own norm.

Exercise

If Q means the quotation of, write two different sentences X and Y so that each names the other.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Thank you.

Robert M. Martin.

There Are Two Errors in the the Title of This Book, Revised and Expanded (Again): A Sourcebook of Philosophical Puzzles, Problems, and Paradoxes, 3/e. Broadview Press, 2011.

Lawrence S. Moss.

1#: a text register machine introduction to computability theory, 2015.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Robert I. Soare.

Turing Computability: Theory and Applications. Springer-Verlag, Berlin Heidelberg, 2016.