Cardinality Puzzles

Tyler Markkanen

Springfield College

Math, Physics, and Computer Science Colloquium December 12, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves

This is joint with Oscar Levin.

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
•0			

Definition

- A set is any collection of items (usually numbers). Each item is called an **element** of the set.
- The **cardinality** of a finite set is the number of elements in the set.

Example

- Let $S = \{0, 17, 8, 9\}.$
- 17 is an element of the set S, which is written as $17 \in S$.
- 5 is not an element of S, and this is written as $5 \not\in S.$
- The cardinality of S is denoted by |S|, and in this case |S|=4.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

00 0000	

Sets are determined by what their elements are. So repetition of elements does not count, and neither does order.

Example

- The set $\{4, 2, 4, 3\}$ is the same set as $\{4, 2, 3\}$.
- The set {4,2,3} is the same set as {2,3,4}.

Definition

We define a **cardinality puzzle** to be any description of a set that explicitly mentions the cardinality of itself.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Puzzle

Let $A = \{2, |A|\}$. What is the cardinality of the set A?

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
••			

Sets are determined by what their elements are. So repetition of elements does not count, and neither does order.

Example

- The set $\{4, 2, 4, 3\}$ is the same set as $\{4, 2, 3\}$.
- The set {4,2,3} is the same set as {2,3,4}.

Definition

We define a **cardinality puzzle** to be any description of a set that explicitly mentions the cardinality of itself.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Puzzle

Let $A = \{2, |A|\}$. What is the cardinality of the set A?

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
	●000		

Puzzle

What is the cardinality of the set $A = \{2, |A|\}$?

Solution

Notice that A appears to have two elements. That is, |A| = 2. But this observation has the following consequence:

$$|A|=2 \implies A=\{2,2\}=\{2\} \implies |A|=1$$

Let's see what this now leads to:

$$|A| = 1 \implies A = \{2, 1\} \implies |A| = 2$$

We are in a vicious cycle, so this puzzle seems to have no solution.

This is similar to the **Liar Paradox**: "This sentence is false." If it is indeed false, then it's true! And if it's true, then it's false again!!

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
	0000		

Puzzle

What is the cardinality of the set $A = \{2, 3, |A|\}$?

Solution

It appears to have three elements: |A| = 3. But this leads to:

$$|A| = 3 \implies A = \{2, 3, 3\} = \{2, 3\} \implies |A| = 2$$

This in turn leads to:

$$|A| = 2 \implies A = \{2, 3, 2\} = \{2, 3\} \implies |A| = 2$$

That works! So this is not a paradox. It has a solution: the set is $A = \{2, 3\}$ and its cardinality is two.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
	0000		

Puzzle

What is the cardinality of the set $A = \{2, 3, |A|\}$?

Solution

It appears to have three elements: |A| = 3. But this leads to:

$$|A|=3\implies A=\{2,3,3\}=\{2,3\}\implies |A|=2$$

This in turn leads to:

$$|A|=2 \implies A=\{2,3,2\}=\{2,3\} \implies |A|=2$$

That works! So this is not a paradox. It has a solution: the set is $A = \{2, 3\}$ and its cardinality is two.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

ality Puzzles	Unique Solutions	Knights and Knaves
	anty Fuzzies	000

No Solutions: Given any natural number $k \ge 1$, the following cardinality puzzle is a paradox:

$$A = \{1, 2, \dots, k, k+2, |A|\}$$

Example (k = 1)

The following cardinality puzzle is a paradox: $A = \{1, 3, |A|\}$.

Notation: For convenience, we'll often use the symbol *a* instead of |A|. So the puzzle shown above can be written as $A = \{1, 3, a\}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
00	0000	000	000

Example

 $A = \{4, |A|, 2|A|\} = \{4, a, 2a\}$

Once again, it appears to have three elements.

$$|A|=3\implies a=3\implies A=\{4,3,2(3)\}=\{4,3,6\}$$

Since repetition doesn't count in sets, and since 4 is the only constant element of A, could |A| = 1? How about |A| = 2?

$$a = 1 \implies A = \{4, 1, 2(1)\} \implies A = \{4, 1, 2\} \times a = 2 \implies A = \{4, 1, 2(2)\} \implies A = \{4, 2, 4\} = \{4, 2\} \checkmark$$

<ロト < 団ト < 団ト < 団ト < 団ト 三国 のへで</p>

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
00	0000	000	000

Example

 $A = \{4, |A|, 2|A|\} = \{4, a, 2a\}$

Once again, it appears to have three elements.

$$|A|=3\implies a=3\implies A=\{4,3,2(3)\}=\{4,3,6\} \checkmark$$

Since repetition doesn't count in sets, and since 4 is the only constant element of A, could |A| = 1? How about |A| = 2?

$$a = 1 \implies A = \{4, 1, 2(1)\} \implies A = \{4, 1, 2\} \times a = 2 \implies A = \{4, 1, 2(2)\} \implies A = \{4, 2, 4\} = \{4, 2\} \checkmark$$

うりつ 正則 エル・エリ・ 山口・ うくの

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
00	0000	000	000

Example

 $A = \{4, |A|, 2|A|\} = \{4, a, 2a\}$

Once again, it appears to have three elements.

$$|A|=3\implies a=3\implies A=\{4,3,2(3)\}=\{4,3,6\} \checkmark$$

Since repetition doesn't count in sets, and since 4 is the only constant element of A, could |A| = 1? How about |A| = 2?

$$a = 1 \implies A = \{4, 1, 2(1)\} \implies A = \{4, 1, 2\} X$$
$$a = 2 \implies A = \{4, 1, 2(2)\} \implies A = \{4, 2, 4\} = \{4, 2\} \checkmark$$

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
00	0000	000	000

Example

 $A = \{4, |A|, 2|A|\} = \{4, a, 2a\}$

Once again, it appears to have three elements.

$$|A|=3\implies a=3\implies A=\{4,3,2(3)\}=\{4,3,6\} \checkmark$$

Since repetition doesn't count in sets, and since 4 is the only constant element of A, could |A| = 1? How about |A| = 2?

$$a = 1 \implies A = \{4, 1, 2(1)\} \implies A = \{4, 1, 2\} X$$

$$a = 2 \implies A = \{4, 1, 2(2)\} \implies A = \{4, 2, 4\} = \{4, 2\} \checkmark$$

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
		•00	

Each of the following cardinality puzzles has a unique solution.

$$A = \{a, a+1, a+2\}$$

2
$$A = \{4, 5, a, a + 1, 2a - 1\}$$

In fact, they both have the same solution: $\{3, 4, 5\}$. But notice that the first has three possible cardinalities (1, 2, or 3), and the second has four (2, 3, 4, or 5). So they have different *complexities*.

Definition

The **complexity** of a cardinality puzzle is the number of its possible cardinalities. Technically, it is the number m of variable elements displayed if there are no constant elements, and m + 1 otherwise.

Goal: Given any *selfish* set S (meaning that $|S| \in S$) and any natural number m, build a cardinality puzzle of complexity m such that S is its unique solution.

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
		000	

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
		000	

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
		000	

◆□ ▶ ▲□ ▶ ▲目 ▶ ▲□ ▶ ▲□ ▶

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
		000	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□■ のへ⊙

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
		000	

◆□ > ◆□ > ◆ = > ◆ = > = = の < ⊙

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
		000	

(日)

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
		000	

きょう きょう きょう きょう きょう

Cardinality Puzzle: $A = \{1, 3, a, 6, f\}$ Complexity: 3

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cardinality Puzzle: $A = \{1, 3, a, f_6, f\}$ Complexity: 4

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cardinality Puzzle: $A = \{1, f_3, a, f_6, f\}$ Complexity: 5

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
00	0000	000	000

Cardinality Puzzle: $A = \{1, f_3, a, f_6, f, , \}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□■ のへ⊙

Sets	Cardinality Puzzles	Unique Solutions	Knights and Knaves
00	0000	00•	000

Cardinality Puzzle: $A = \{1, f_3, a, f_6, f, g, h\}$

Complexity: 7

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

Kight-and-Knave Problems: We encounter some trolls. Each troll is either a knight or a knave. Knights always tell the truth, and knaves always lie. Can we determine which one is which?

Problem (Two Trolls)

Troll 1: We are both knights. Troll 2: Troll 1 is a knave.

Solution

Assume Troll 1 is a knight. Then Troll 2 is also a knight but lying at the same time. This is impossible! So Troll 1 is a knave. Thus Troll 2 speaks the truth, meaning that Troll 2 is a knight.

Puzzle (Two Sets)

 $A = \{1, a, b\}$ "We are both knights." $B = \{3, a\}$ "A is a knave."

(where a = |A| and b = |B|)

Solution

Assume a = 3. Then b = 2 (based on the elements of A, which show that $b \neq 1$). But at the same time, $B = \{3,3\} = \{3\}$. So b = 1. This is impossible! So $a \neq 3$. Thus b = 2 (based on the elements of B). In the end $A = \{1, 2, 2\} = \{1, 2\}$ and $B = \{3, 2\}$.

A is playing the role of Troll 1, and B the role of Troll 2. Indeed, A lied about how many elements it had, and B told the truth.

Unique Solutions

Knights and Knaves ○○●

Three Trolls & Three Sets

T1: Only one of us is a knave.T2: No, only one of us is a knight.T3: We are all knaves.

$$\begin{aligned} &A = \{1, 3, 5, 6, 7, b, c - 7\} \\ &B = \{7, 11, a, c\} \\ &C = \{4, 7, 11, 12, \dots, 16, a, b, c\} \end{aligned}$$

Solution

First, $c \neq 11$ (T3 must be lying), because if c = 11 then $|C| \leq 10$. So |C| = 9 or 10, which implies that a = 7 or b = 4 (T1 or T2 is a knight), or both. Assume a = 7. Since c is neither 11 nor 7, $b = |B| \geq 3$. But $b \neq 3$ according to A, so |B| = b = 4. Thus $a \neq 7$, contradicting our assumption. So b = 4 (T2 was a knight all along), and $a \neq 7$ (T1 is a knave). Notice $a = |A| \geq 6$, so in fact a = 6. Plugging this all into C shows us c = 10. In the end it's:

Knave, Knight, Knave $\{1,3,4,5,6,7\}$, $\{6,7,10,11\}$, $\{4,6,7,10,11,12,\ldots,16\}$

Thank you.

