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standing reverse mathematics more broadly.
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1. Introduction

The search for necessary and sufficient conditions for a graph to have a
perfect matching has a long and distinguished history, and has resulted in a
range of theorems both for bipartite graphs and for graphs in general. For
theorems concerning matchings in bipartite graphs, much research has been
done to classify their computational and proof-theoretical strength [1, 2, 3, 4].

In this paper, we will turn our attention to classifying the strength of the-
orems about the existence of matchings in general graphs. In particular, we
will study a number of related theorems due to Steffens [5], who gave a par-
ticularly elegant criterion for the existence of perfect matchings in countable
graphs.

1.1. The existence of perfect matchings
A graph G = (V,E) is a set of vertices V together with a set of edges

E, each edge a two-element subset of V . Thus, a graph is simple (without
multiple edges and without loops) and undirected, but need not be connected
or even have any edges at all. A matching is a subset M ⊆ E so that no
vertex of G is incident to more than one edge of M . Thus, the empty set is
also a matching. A matching is perfect if every vertex of G is incident to an
edge of M .

Now suppose thatM is some matching, and that v is a vertex not covered
byM . It is natural to ask whetherM can be modified to cover v, by starting
at v and repeatedly adding and removing edges. To make this precise, con-
sider a matching M and a path P = (vi)i<k≤ω, where a path P is an injective
sequence of vertices such that {vi, vi+1} ∈ E for each i+ 1 < k.

A path is called M-alternating if the edges {vi, vi+1} alternately lie in M
and E \M (the trivial path, consisting of a single vertex, is automatically
M -alternating). AnM -alternating path P is calledM-augmenting if it starts
at a vertex s ∈ V (G)\V (M) and either (1) P is infinite, or (2) P terminates
in a vertex v ∈ V (G) \ V (M) with v 6= s.

Notice that if P is anM -augmenting path, then swapping the membership
of those edges in the path results in a strictly larger matching. In other words,
the existence of an M -augmenting path allows us to extend the matching M
to cover an additional one or two vertices. We often identify P with its
constituent edges, so this process of alternating the edges of M which are a
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part of P , while keeping every edge of M that doesn’t touch P , is the same
as taking the symmetric differenceM∆P ofM and the edges of P . It is easy
to see that this is still a matching by considering the edges at each vertex,
and now the vertex s is covered by the new matching (as is v in the case that
the M -augmenting path terminates).

It is natural to ask whether there is a connection between the existence
of perfect matchings and the existence of augmenting paths for imperfect
matchings. For countable graphs, this question was answered by Steffens [5]
using the following terminology.1

Definition 1.1. A countable graph G is said to satisfy condition (A) if for
every matching M and for every vertex s ∈ V (G) \ V (M) there exists an
M -augmenting path which starts at s.

Theorem 1.2 (Steffens [5]). A countable graph G has a perfect matching if
and only if G satisfies condition (A).

The implication in one direction is straightforward.

Proposition 1.3. If a countable graph G has a perfect matching, then G
satisfies condition (A). Furthermore, this holds over RCA0.

Proof. Fix a graph G and a perfect matching N . For any imperfect matching
M and any s /∈ V (M), comparing M with N allows us to define an M -
augmenting path (vi)i<k≤ω, as required by the statement of condition (A).
To see why, let v0 = s and v1 be the neighbor of s such that {s, v1} ∈ N . If
v1 /∈ V (M), then P = (s, v1) is the desired M -augmenting path. Otherwise,
if v1 ∈ V (M), there is a v2 such that {v1, v2} ∈ M . But then, because N
matched v1 to s and because v2 ∈ V (N), there must be a distinct v3 such that
{v2, v3} ∈ N . Continuing like this, either we end with vk outside of V (M) or
we never end. In either case, the path is M -augmenting. Furthermore, this
path is clearly ∆0

1 in M and N , so the path exists by RCA0.

It follows that the strength of Theorem 1.2 is contained in the implication
“If condition (A) holds of a graph G, then there is a perfect matching of G.”
We will call this direction of the biconditional the Perfect Matching Theorem,
or PM.

1For uncountable graphs G, there is a different condition classifying the G which have
a perfect matching, but that condition is more complicated. See Aharoni’s results of [6].
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Given a matching M , the corresponding vertex set V (M) is called the
support of M . Steffens points out that his proof of Theorem 1.2 proves an
apparently stronger result: even graphs that do not satisfy condition (A)
must have a matching of maximal support.

Theorem 1.4 (Steffens [5]). For each countable graph G = (V,E) there is a
maximal subset V ′ ⊆ V which has a perfect matching.

We will call Theorem 1.4 the Maximal Matching Theorem, or MM. The
connection between the main theorems is straightforward, but illuminating.

Proposition 1.5. Theorem 1.4 implies Theorem 1.2 over RCA0.

Proof. Consider any graph G. By Theorem 1.4, G has a matching M of
maximal support. Suppose also that G satisfies condition (A). Then if there
is any v /∈ V (M), there is an M -augmenting path P starting at that v. But
recall from above that because P is an M -augmenting path, then M ∆ P
is a matching of G that covers more vertices than M . This contradicts the
maximality of M . Furthermore, it is clear that M ∆P is ∆0

1 in M and P , so
the proof goes through in RCA0.

The proofs of Theorems 1.2 and 1.4 revolve around a special kind of
matching, which will be discussed in more depth in Section 4.

Definition 1.6. A matching M is independent if the only M -augmenting
paths are length-1 paths that begin and end at vertices outside of M .

Although it is also true that every graph has an edge maximal matching,
edge maximal matchings are trivial to construct, and so are not of interest
to this paper.

1.2. Classifying computational strength
We will analyze several versions of PM and MM (Theorems 1.2 and 1.4)

from the viewpoint of computability theory and reverse mathematics. In-
deed, this paper can be seen as a “case study” in how varying specific graph-
theoretic features of a mathematical principle directly impacts the logical
strength of that principle.

In the next section, Figure 1 summarizes our results showing that versions
of Theorems 1.2 and 1.4, obtained by restricting them to different classes of
graphs, are either equivalent or closely related to the standard subsystems of
second order arithmetic.
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This work continues several important veins of research into the reverse
mathematics of principles in infinite graph theory. In particular, the current
paper is closely related to the reverse mathematics of the König duality
theorem for countable bipartite graphs, written CKDT, which relates the
existence of matchings to vertex covers of bipartite graphs. This theorem
has been shown to be equivalent to ATR0. A proof in Π1

1-CA0 and a reversal
to ATR0 were provided by Aharoni, Magidor, and Shore [1], and Simpson [3]
later showed that this theorem is provable in ATR0. Continuing this line of
work, Shafer [2] studied Menger’s theorem for countable webs, which is a
sort of generalization of CKDT. Shafer, in [2], showed that Menger’s theorem
is provable in Π1

1-CA0, and defined an extended version that is equivalent
to Π1

1-CA0. Later, Towsner [4] refined this result to show that Menger’s
theorem for countable bipartite graphs is actually provable in the system
that he defines in [4] and calls TLPP0 (which stands for “transfinite leftmost
path principle”), which lies strictly between ATR0 and Π1

1-CA0.
The work in the current paper continues this trend of increasing complex-

ity. It is not difficult to see that the statement itself of PM is significantly
more complex than either CKDT or Menger’s theorem for countable webs.
In particular, those two theorems are defined by Π1

2 sentences, while PM is
equivalent to a Π1

3 sentence. In other words, PM is particularly interesting
since it has a similar flavor to these other principles, but with a significantly
higher sentence complexity.

In other ways, this paper builds on research such as that of Hirst [7], [8]
who studied a number of of variants of Hall’s theorem concerning match-
ings of bipartite graphs. By considering different necessary and sufficient
conditions for a graph to have a perfect matching, Hirst obtained principles
equivalent to systems around the levels of ACA0 and WKL0. The current pa-
per continues and extends this line of research, supporting and expanding our
understanding of the relationship between specific graph-theoretic features
and reverse mathematics.

We assume that the reader is familiar with computability theory and re-
verse mathematics, including the “big five” subsystems of second order arith-
metic: RCA0, ACA0, WKL0, ATR0, and Π1

1-CA0. Other subsystems will be de-
fined when they are introduced. For additional background on computability
theory, see [9] or [10]. For additional background on reverse mathematics,
see [11].
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2. Summary of results

We will study the existence of three main types of matchings in countable
graphs: perfect matchings, matchings of maximal support, and maximal
independent matchings. More precisely, we will use the following definitions,
formalized in second order arithmetic.

Π1
2-CA

+
0

MM PM + MIM

Π1
2-CA0

MIM

Π1
1-CA0

Sequential PM

ATR0

PM

Finite Path PM

Collection of PMΣ1
1-AC0

ACA0 Locally Finite PM; Locally Finite MM

WKL0 Bounded PM; Bounded MM

RCA0 Finite PM; Finite MM

Cor. 4.13

Thm. 4.7

Thm. 4.12

Cor. 4.14

Thm. 5.6

Prop. 5.7

Prop. 5.8

+Π1
1-TI0

Thm. 6.13
Thm. 5.2 & 6.14

Cor. 6.3

Cor. 5.4

Prop. 3.5 & 3.6

Prop. 3.4 & 3.6

Prop. 3.1

Figure 1: Summary of results

Statement 2.1. The following statements can be formalized in RCA0.

1. The Perfect Matching Theorem, or PM, denotes the statement, if G is
a graph satisfying condition (A), then there is a perfect matching M of
G.
(We also study the natural restriction of PM to specific classes of
graphs, including finite graphs, bounded graphs, and locally finite graphs.)
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2. The Maximal Matching Theorem, or MM, denotes the statement, for
any graph G, there is a matching M of G so that V (M) is not properly
contained in the support of any other matching.

3. Maximal Independent Matching, or MIM, denotes the statement, for
any graph G, there is an independent matchingM of G so that V (M) is
not properly contained in the support of any other independent match-
ing.

4. Collection of PM denotes the statement, if X = 〈G1, G2, . . . 〉 codes a
sequence of disjoint graphs, and if each Gi has a perfect matching Mi,
then there is a perfect matching M for the graph G =

⋃
iGi.

5. Sequential PM denotes the statement, if X = 〈G1, G2, . . . 〉 codes a
sequence of disjoint graphs, then PM holds of each Gi.

The majority of the results of this paper are summarized in Figure 1,
which shows relationships between these principles and standard subsystems
of second order arithmetic. Solid arrows indicate a proof over RCA0, while
the dashed arrow indicates a reversal over the specified base system. When a
strict implication is known to hold, we use a double arrow. A non-redundant
non-implication is indicated using a slash through an arrow.

During the course of the paper, we will study a number of versions of PM
obtained by restricting the statement of PM to a specific class of graphs. In
Section 3, we study locally finite graphs. There, Locally Finite PM denotes
the restriction of PM to graphs in which each vertex has finitely many neigh-
bors. We show that Locally Finite PM is equivalent to ACA0 over RCA0.
Similarly, Bounded PM denotes the restriction of PM to only those locally fi-
nite graphs where there exists a function bounding the neighborhood relation.
In other words, Bounded PM is the restriction of PM to the reverse mathe-
matical analogue of highly computable graphs. We show that Bounded PM is
equivalent to WKL0 over RCA0. These results illustrate and support the stan-
dard reverse mathematical intuitions concerning the combinatorial content
of ACA0 and WKL0.

The picture becomes more interesting in Sections 4, 5, and 6 when consid-
ering graphs that are not locally finite. The principles concerning maximal
matchings, MM and MIM, are both above Π1

1-CA0, while MIM is strictly
below Π1

2-CA0, and MM is below Π1
2-CA

+
0 , but cannot imply Π1

2-CA0. The
strength of PM falls somewhere between MM and Finite Path PM, where
Finite Path PM denotes the restriction of PM to graphs with no infinite
paths (recall that a path cannot visit any vertex twice). We show that
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Finite Path PM implies ATR0 over Π1
1-TI0.

To see why this base system is so unusual, recall that the hypothesis,
“G satisfies condition (A),” is Π1

2 with parameter G, while the conclusion is
Σ1

1 (also with parameter G). In other words, the hypothesis of PM is more
complex than its conclusion. This is in stark contrast with theorems such as
König’s Lemma, whose hypothesis is a Π0

1 sentence (the existence of arbitrar-
ily long finite paths) and whose conclusion is a Σ1

1 sentence (the existence
of an infinite path). When the conclusion is of higher complexity than the
hypothesis, it is generally straightforward to verify the properties of any at-
tempted coding. In PM, on the other hand, the hypothesis is more complex
than the conclusion. Thus, any attempt to code into PM requires proving a
Π1

2 property in order to draw a Σ1
1 conclusion. This discussion suggests one

of several novel challenges introduced by the complexity of condition (A),
which will be a common theme throughout this paper.

3. Matchings for locally finite graphs

We begin by considering restrictions of PM to the simpler case of locally
finite graphs.

It is easy to see that PM for finite graphs is provable in RCA0.

Proposition 3.1. RCA0 proves PM for finite graphs. That is, RCA0 implies
that every finite graph satisfying condition (A) has a perfect matching.

Proof. Any finite graph G has only finitely many matchings. Because being
a finite matching is a ∆0

1 property, there is a maximal such matching by Σ0
1

induction. But since the graph satisfies condition (A), this matching of max-
imal support must cover all vertices, as discussed in the proof of Proposition
1.5.

The case of PM for locally finite graphs is more interesting. Steffens [5]
points out that this case can be proved directly using the Rado Selection
Lemma for such graphs. That proof can be formalized in ACA0 using the
version of Rado’s theorem in Theorem III.7.8 of [11]. To consider the addi-
tional case of bounded graphs, and to lay a foundation for ideas that will be
important later in this paper, we follow a more direct approach.

In particular, the proof below highlights the roles of both condition (A)
and the additional assumption that G is locally finite.
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Definition 3.2. A locally finite graph is bounded provided there is a function
h : V → N such that for all x, y ∈ V , if {x, y} ∈ E then h(x) ≥ y.

Proposition 3.3. ACA0 proves PM for locally finite graphs, and WKL0 proves
PM for bounded graphs.

Proof. Suppose G is a locally finite graph with vertex set N, and which
satisfies condition (A). Define a tree T ⊆ N<N by letting 〈a0, . . . , an〉 ∈ T if
and only if {{0, a0}, . . . , {n, an}} is a matching of {0, . . . , n} ∪ {a0, . . . , an}.

Note that any infinite path 〈ai : i ∈ N〉 through T will correspond exactly
to a set of edges {i, ai} that define a perfect matching of V (G) = N. It is
clear that T is definable in RCA0, and that T is really is a tree since the
matching that witnesses the inclusion of τ ∈ T also witnesses the inclusion
of any prefix of τ .

Note also that for any string 〈a0, . . . , an〉 ∈ T , {i, ai} must be an edge in
G. Because G is locally finite, T will be finitely branching, and in the case
that G is bounded, T will also be bounded.

Because G satisfies condition (A), each imperfect matching of G can be
extended to one of greater support. The key use of this property comes in
the proof that T is infinite. It suffices to show that for each n, there are some
vertices v0, . . . , vn and some finite matching In = {{0, v0}, . . . , {n, vn}} of the
vertices Fn = {0, . . . , n} ∪ {v0, . . . , vn}. We prove this using Σ0

1 induction.
For n = 0, by condition (A) applied to the empty matching, there is an

∅-augmenting path starting at vertex 0, which just consists of some neighbor
of 0, call it v0. Then F0 = {0, v0} has matching I0 = {{0, v0}}.

Now suppose In = {{0, v0}, {1, v1}, . . . , {n, vn}} is a matching of

Fn = {0, 1, . . . , n} ∪ {v0, v1, . . . , vn}.

If n+1 ∈ Fn, then we are done (let vn+1 be the vertex to which n+1 is already
matched). Otherwise, by condition (A), there is an In-augmenting path Pn
beginning at n+ 1. Because V (In) is finite, the path Pn must be finite, and
thus end in some vertex vn+1 /∈ Fn ∪ {n+ 1}. Set Fn+1 = Fn ∪ {n+ 1, vn+1},
and recall that Pn ∆ In is a matching In+1 of Fn+1. In this case, note that
In+1 will not extend In, but will extend some matching on the tree.

It follows that T is an infinite, finitely branching tree. By ACA0 there is
an infinite path P . In the case that G is bounded then T is also bounded, so
the existence of this infinite path P follows from WKL0 instead.

All that remains is to verify that the set of edges M = {{i, P (i)} : i ∈ N}
defines a perfect matching of G. Suppose that M is not a matching. This
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means some vertex in G is incident to at least two edges of M . Consider
the three vertices incident to these two edges. Now restrict T to the level of
T containing all three vertices. This produces a string in T that does not
define a matching, contradicting our definition of T . Clearly V (M) = N, so
the matching is perfect. Thus M is a perfect matching of G.

The upper bounds given above are optimal.

Proposition 3.4. PM for bounded graphs is equivalent to WKL0 over RCA0.

Proof. The forward implication is proved in Proposition 3.3. For the reversal,
we proveWKL0 via Σ0

1 separation, which is sufficient by Lemma IV.4.4 in [11].
Let f, g : N → N be one-to-one functions satisfying ∀i, j [f(i) 6= g(j)]. We
will define a set X such that ∀m [f(m) ∈ X ∧ g(m) /∈ X].

For each n ∈ N, build a disjoint path of odd length (number of edges), in
a way that keeps track of the “center” edge (for example, by using the evens
as the endpoints of the center edges and odds for all other vertices). At each
stage of the construction, add edges to both ends of each path unless n enters
the range of f or g. In this case, stop building the path after first ensuring
that the length is either 1 (mod 4) if n is in the range of f , or 3 (mod 4) if n
is in the range of g. If n never appears in the range of either function, build
the path forever.

The resulting graph will consist of infinitely many disjoint paths, each
either a two-way infinite path or else a finite path of odd length. Such a
graph satisfies condition (A): given a matching M and a vertex v /∈ V (M),
follow the one or two paths leading away from v for as long as they are M -
alternating. If v is on the end of one path, there is one alternating path
leading away from it. In this case, if the alternating path were not augment-
ing, then it would end in a vertex matched by M . Similarly, if v was in the
middle of a path, then the only way neither path leading away from it would
be augmenting is if both paths terminate in a vertex matched byM . In both
these cases, the path would be even, a contradiction.

Moreover, the graph is bounded (define h using the effective construction
of G). Therefore by PM for bounded graphs, there exists a perfect matching
of G. Define the set X to be the set of n such that the “center” edge in the
path for n is in the matching. If n is in the range of f , then the path for n
had length 1 (mod 4), so the only matching includes the center edge, giving
n ∈ X. On the other hand, if n is in the range of g then the path is length 3
(mod 4), so the center edge is not in the matching, giving n /∈ X. For any n
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not in either range, the center edge might or might not be in the matching,
which is fine. Thus X is a separating set as required.

The full locally finite case was previously shown equivalent to ACA0 by
Sakakibara [12]. We include a proof for completeness.

Proposition 3.5 (Sakakibara [12]). PM for locally finite graphs is equivalent
to ACA0 over RCA0.

Proof. The forward implication is proved in Proposition 3.3. For the reversal,
let f : N→ N be a one-to-one function. We want to show that the range of
f exists.

Build a graph G consisting of infinitely many disjoint paths, either of
length 1 (edge) or 3. Specifically, for each n, put an edge {4n, 4n+ 2} in the
graph. Whenever a number n enters the range of f , add edges {j, 4n} and
{4n+ 2, k}, where j and k are the least unused odd natural numbers.

Since all vertices of G are part of either a length-1 or length-3 path, G
satisfies condition (A): for any matching M and vertex v0 /∈ V (M), if v0 is
even, then it must be adjacent to an unmatched vertex we can search for and
find. If v0 is odd, then we can search for its even neighbor, which if matched
will start a length-3 alternating path. Moreover, G is clearly locally finite.
Thus there is a perfect matching M of G. From this matching, define the
range of f as those n for which {4n, 4n+ 2} /∈M .

Recall that MM implies PM over RCA0, and that MM is a corollary to
Steffens’ proof of PM. When restricting to locally finite graphs, we will show
that these principles are in fact equivalent.

To show that Locally Finite PM implies Locally Finite MM, we will use
the fact that Locally Finite PM implies ACA0, and similarly for Bounded PM
and WKL0. In other words, we prove that every locally finite graph has a
maximal matching in ACA0, and that this holds in WKL0 for bounded graphs.

Proposition 3.6. Over RCA0, MM for locally finite graphs is equivalent to
Locally Finite PM, and MM for bounded graphs is equivalent to Bounded PM.

Proof. The proof of Proposition 1.5 shows that any maximal matching for a
graph satisfying condition (A) is perfect, so the existence of maximal match-
ings for locally finite (or bounded) graphs implies PM for these graphs.

For the other direction, we will show that ACA0 proves that every locally
finite graph has a maximal matching, and WKL0 proves that every bounded
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graph has a maximal matching. The argument is similar to the proof in
Proposition 3.3, except now we will skip vertices for which there is no way
to extend the matching.

First, define a sequence 〈bi〉i<k≤ω recursively as follows. Let b0 be the
least non-isolated vertex of the graph. For n > 0, let bn be the least vertex
for which there is a matching in G that covers {b0, . . . , bn}. The sequence
is strictly increasing, and definable over ACA0 in general, and in fact RCA0

for bounded graphs. If the sequence 〈bi〉 is finite, then we are done, since
any matching that witnesses the last term in the sequence will be a maximal
matching. In the case where the sequence is infinite, proceed as follows.

Define a tree T ⊆ N<N by putting 〈a0, a1, . . . , an〉 ∈ T iff {{bi, ai} : i ≤ n}
is a matching of {b0, . . . , bn} ∪ {a0, . . . , an}. From the definition of 〈bi〉, for
each i there is a string of length i which will be on this tree. Therefore, the
tree must be infinite. For locally finite graphs, the tree is locally finite and
definable over ACA0, thus in ACA0 the tree has a path. For bounded graphs
the tree is bounded and definable over RCA0, so has a path in WKL0.

We claim that any path through the tree gives us a maximal matching
M . Suppose there was a matching N with V (N) ⊃ V (M). Let v be the least
vertex in V (N) \ V (M), and as such v 6= bi for any i ∈ N. Let j be greatest
such that bj < v. Then restricting N to its edges covering {b0, . . . , bj, v} gives
a finite matching that covers these vertices, which would have put v = bj+1,
a contradiction.

4. Finding matchings in general

The proofs in Section 3 made an essential use of the assumption that G
was locally finite, as König’s lemma is false for infinitely branching trees.

One naïve approach to proving PM in the general case would be to itera-
tively use augmenting paths to grow a matching that will cover an increasing
number of vertices of the graph. Unfortunately, there are graphs where this
repeated augmentation results in a vertex such that the edge that covers it
changes infinitely often, and consequently, that vertex will not be covered in
the limit.

To avoid this obstacle, Steffens’ proof in [5] centers around building
matchings that are stable under augmentation. An M -augmenting path is
proper provided it passes through an edge of M . It is easy to see that an
M -augmenting path P is proper if and only if using P to augment M flips
an edge in M .
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Thus the matchings stable under augmentation are the ones with no
proper augmenting paths (that is, where augmenting M by any P is equiva-
lent to adding the single edge of P to M).

Definition 4.1 (Steffens [5]). A matching M is independent if there is no
proper M -augmenting path starting at a vertex s ∈ V (G) \ V (M).

A subgraph G′ of G is independent if G′ has a perfect matching and if
every perfect matching of G′ is independent as a matching of G (not of G′).

Note that the definition of the independence of M is a Π1
1 sentence with

parameterG. These definitions are closely related to each other: it is provable
in RCA0 that a subgraph G′ of G is independent if and only if there is at
least one independent perfect matching of G′ (Lemma 4.6).

Steffens’ proof centers around two key insights. First, Steffens showed
that chains of independent subgraphs of increasing support can be combined
into a single maximal independent subgraph of the union. On its own, this
does not prove PM or MM; it is conceivable that some maximal indepen-
dent matching might be contained inside a chain of larger, non-independent
matchings.

Second, Steffens proves a sequence of lemmas that, together, allow one
to extend any imperfect maximal independent matching to cover a single
unmatched vertex, while also ensuring that the complement of (the subgraph
induced by) this new matching still satisfies condition (A). By iterating this
construction (to cover all unmatched vertices), a perfect matching can then
be obtained.

Some of Steffens’ lemmas are technical and go beyond the scope of this
paper. However, we give a brief introduction to the results most important
for our arguments. We also include some details to give the reader a sense
of the underlying graph theory. The reader should refer to [5] for a complete
picture.

To begin, note that the union of two independent subgraphs is not always
independent. For example, consider the path of length 2. Each of the edges is
an independent matching, but the union of those edges is not even matchable
(so is clearly not independent). The following lemma summarizes two ways
of combining independent subgraphs that do preserve independence.

Lemma 4.2. The following are provable in RCA0. (1) The union of two
disjoint independent subgraphs is independent. (2) If I1 is an independent
subgraph of G and I2 is independent in G \ I1, then I1 ∪ I2 is independent in
G.
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Proof. The second property is from Aharoni, Lemma 4.4 in [6]. Assume that
I1 is an independent subgraph of G and I2 is independent in G \ I1.

Suppose for a contradiction that I1 ∪ I2 is not independent in G. Note
that I1 ∪ I2 has a perfect matching, namely the union of a perfect matching
of I1 and a perfect matching of I2. So I1 ∪ I2 must have a perfect matching
M that is not independent. Let M1 and M2 be the matching M restricted
to I1 and I2, respectively. (Clearly M1 is a perfect matching of I1, and M2

is a perfect matching of I2.) Then there is a proper M -augmenting path
P in G starting at s ∈ V (G) \ V (M). If P is disjoint from I1, then this
contradicts the independence of I2 in G \ I1. So consider I1 ∩P , which must
be nonempty. There must be a vertex s′ ∈ V (G) \ V (M1) adjacent to one of
the vertices in this part of the path. The restriction of P to I1 ∪ {s′} cannot
be infinite inside I1 because that would be a proper M1-augmenting path,
but also cannot leave I1 for the same reason.

The first part easily follows from (2).

For clarity, we will distill the “graph theoretic core” of the proof of PM in
[5] into the following lemma.

Lemma 4.3 (Adapted from [5]). The following hold over the given system.

1. (RCA0) If G satisfies condition (A) and if M is an independent match-
ing of G, then G \ V (M) satisfies condition (A).

2. (Π1
2-CA0) Suppose G satisfies condition (A) and s ∈ V (G), but there

are no nonempty independent subgraphs of G. Then there is a matching
M ′′ of G such that s ∈ V (M ′′) and G \ V (M ′′) satisfies condition (A).

To prove PM using Lemma 4.3, Steffens’ proof first obtains a maximal
independent matching. By Lemma 4.3 part (1), the graph of the remaining
unmatched vertices continues to satisfy condition (A). Also, by Lemma 4.2
part (2), the remaining graph has no nonempty independent subgraphs. Thus
by Lemma 4.3 part (2), we can find a matching M ′′ of G that covers any
one of the remaining unmatched vertices, and so that its removal preserves
condition (A). Iterating this process, all vertices of G can be covered by the
edges of a matching.

Because our statement of Lemma 4.3 is not exactly identical to any lemma
of Steffens, we close our discussion with a short sketch of its proof, which
simply indicates how it follows from the lemmas of Steffens [5].
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Proof sketch of Lemma 4.3. For the first property, let M ′ be a matching of
G \ V (M), and let s ∈ V (G) \ V (M) be a vertex not covered by M ′. Since
V (M) and V (M ′) are disjoint, M ∪M ′ is a matching of G. Then, because
G satisfies condition (A), there must be a path P in G that starts at s and
augments M ∪M ′. Now it cannot be that P ever enters M , for if it did,
the restriction of P to M together with the vertex s′ before P first enters M
and the first vertex of P no longer in M (if there is one) would be a proper
M -augmenting path. Since M is independent, this cannot happen. Thus
P is disjoint from M , so it is in fact an M ′-augmenting path contained in
G \ V (M), as needed.

For the second property, let M ′ be a maximal (possibly empty) inde-
pendent matching of G \ s (this requires an application of MIM, which, in
Theorem 4.7, we will show is provable in Π1

2-CA0). Because G satisfies condi-
tion (A), and because s /∈ V (M ′), there is anM ′-augmenting path P starting
at s. LetM ′′ = M ′∆P , which is a perfect matching of V (M ′)∪P . Together,
Lemmas 5 and 7 of [5] are exactly the statement that G \ V (M ′′) satisfies
condition (A). Furthermore, it is straightforward to see that the proofs of
Lemmas 5 and 7 of [5] can be formalized inside ACA0.

4.1. Proofs of MIM and PM

Given a graph G, Steffens’ original proof of PM used infinitely many ap-
plications of Zorn’s Lemma to find a matching of G. More precisely, Steffens
used Zorn’s Lemma to prove the existence of maximal independent match-
ings (our MIM) and then recursively applied that principle ω times. In this
section, we will first show that MIM is provable in Π1

2-CA0 using an inner
model technique. Later, we will use a related line of reasoning to see that it
is not possible for either PM or MM to imply Π1

2-CA0.
The inner model technique we use is analogous to the ones used in [3]

to prove that ATR0 implies CKDT and in [2] to prove that Π1
1-CA0 implies

Menger’s theorem for countable webs. The primary difference is that while
the above proofs were able to use ω- or β-models; we use β2-models because
we will need to reflect the existence of a maximal independent matching (a
Σ1

2 property) out of the model, and still have it be maximal independent. We
begin with some background on β and β2 models.

Definition 4.4 (Simpson [11]). The following definition is made within
RCA0. A countable coded ω-model is a set W ⊆ N, viewed as encoding
the L2-modelM = (N, SM,+, ·, 0, 1, <) with SM = {(W )n : n ∈ N}.

15



Let 0 ≤ k < ω. A βk-model is an ω-model M such that for all Σ1
k

sentences ϕ with parameters from M, ϕ is true if and only if M |= ϕ. A
countable coded βk-model is a countable coded ω-model M such that for
all e,m ∈ N and X, Y ∈ SM, ϕk(e,m,X, Y ) is true if and only if M |=
ϕk(e,m,X, Y ), where ϕk(e,m,X, Y ) is a universal Σ1

k formula (see [11]). A
countable coded β-model is a countable coded β1-model.

To understand the semantic meaning of Definition 4.4, let N = (N, SN )
be any model of RCA0. Then a set W ∈ SN defines a countable coded βk-
model, in the context of the intended model (N, SN ), if for each Σ1

k sentence
φk with set parameters from {(W )n : n ∈ N}, (N, SN ) |= φk if and only if
(N, {(W )n : n ∈ N}) |= φk.

By combining Theorem VII.7.4 and Theorem VII.6.9(3) of [11], we see
that, over ACA0, Π1

1-CA0 (resp., Π1
2-CA0) is equivalent to the statement that

for allX ⊆ N, there exists a countable coded β-model (resp., countable coded
β2-model)M such that X ∈M.

To build a maximal independent matching, we require Lemmas 1 and 2
of [5].

Lemma 4.5 (Lemma 1 of Steffens [5]). Let G be a countable graph. RCA0

proves that ifM is a perfect matching of G, and G′ is an independent subgraph
of G, then there is no edge {s, v} ∈ M such that s ∈ V (G) \ V (G′) and
v ∈ V (G′).

Proof. Suppose for a contradiction that there is an edge {s, v} ∈ M with
s ∈ V (G) \ V (G′) and v ∈ V (G′), and (by definition of independence of G′)
let M ′ be an independent perfect matching of G′. We can now form a proper
M ′-augmenting path starting at s, which will contradict the independence
of M ′. Start with the edge {s, v} ∈ M , and let v0 = s and v1 = v. By
assumption, v1 ∈ V (M ′), so there is an edge in M ′ from v1 to some v2 6= v1.
Note that in M , v2 cannot be matched to v1 (because v1 is matched to
v0 6= v2) and is thus matched to another vertex v3. Repeating this process,
we obtain a path P that either keeps going forever, or it leaves G′. In either
case, it is a proper M ′-augmenting path. Finally, note that the definition of
P is ∆0

1 in M ⊕M ′, so it exists by RCA0.

Lemma 4.6 (Lemma 2 of Steffens [5]). Let G be a countable graph. RCA0

proves that a subgraph G′ of G is independent if and only if there exists an
independent perfect matching for G′.
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Proof. The forward direction follows trivially from the definition of inde-
pendent subgraph. For the other direction, let G′ be a subgraph of G and
assume that there exists an independent perfect matching M ′ for G′. We
must show that every perfect matching of G′ is also independent. Suppose
toward a contradiction that there is a perfect matching M of G′ that is not
independent. Then there is a proper M -augmenting path P beginning at
some s ∈ V (G) \ V (G′), which has second vertex v ∈ V (G′).

Let v0 = s and v1 = v. Similar to the proof of Lemma 4.5, define a path
(vi)i<k≤ω such that {v1, v2} ∈M ′, {v2, v3} ∈M , and so forth, alternating be-
tween the two matchings. This is now a properM ′-augmenting path starting
at s, which contradicts the independence of M ′.

We can now prove the first main result of this section. Note that if P (G) is
a property of a graph G, then we sometimes write P (G)M as an abbreviation
forM |= P (G).

Theorem 4.7. Π1
2-CA0 proves MIM.

Proof. By Π1
2-CA0, there is a countable coded β2-model M containing the

graph G as an element. Note that it is arithmetical with parameter M to
define independentM matchings, as these are the columns of M which are
matchings that are not properly augmented by any other column ofM. By
arithmetical comprehension, using a code for M as a parameter, we can
form the set of all independentM matchings in M. Arithmetically relative
to this oracle, form a sequence {Mi}i∈N of independentM matchings in M,
with increasing support, by recursion on n as follows. Let gn denote the
n-th vertex in G. M0 is the first independentM matching that contains g0 if
it exists, otherwise it is empty. If there is an independentM matching that
extends the support of Mn and matches gn+1, set it to be Mn+1. Otherwise,
set Mn+1 = Mn. Finally, we form the chain {M∗

i }i∈N by setting M∗
0 = M0

and M∗
i+1 =

(
Mi+1 \ E(V (Mi))

)
∪M∗

i . Then define M∗ =
⋃
i∈NM

∗
i , as in

Steffens’ proof.
We claim that each M∗

i is independentM. Clearly M∗
0 is independentM.

So assume inductively thatM∗
i is independentM, and we will show thatM∗

i+1

is independentM.
Set I1 = V (M∗

i ) and I2 = V (M∗
i+1 \M∗

i ). Then M∗
i is a perfect matching

of I1 and is independentM in G by hypothesis. Also, M∗
i+1 \M∗

i is a perfect
matching of I2, and we claim it is independentM in G \ I1. Indeed, suppose
toward a contradiction that there is a proper (M∗

i+1 \M∗
i )-augmenting path
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P in G \ I1 starting outside of I2. By our choice of M∗
i+1, P is also a proper

Mi+1-augmenting path starting outside of V (Mi+1). This is a contradiction,
because Mi+1 is independentM in G. Therefore, by Lemma 4.6, I1 and I2
are independentM subgraphs of G and G \ I1, respectively. So I1 ∪ I2 is
an independentM subgraph of G by Lemma 4.2(2). Since M∗

i+1 is a perfect
matching of I1 ∪ I2, it is an independentM matching of G, as desired.

We claim that the union M∗ is truly independent (outside of M). If it
were not, then there would be a proper M∗-augmenting path P starting at
a vertex v ∈ V (G) \ V (M∗). Because the M∗

i form a chain of matchings of
increasing support, if P properly augments M∗, then for some i, the restric-
tion Pi of P toM∗

i (the path Pi is inM because it is definable fromM∗
i ) will

properly augment M∗
i . Because M∗

i exists inM, because M∗
i is augmented

by Pi (a Σ1
1 property with parameters inM), and becauseM is a β2-model

(so satisfies Σ1
2 reflection), some proper M∗

i -augmenting path exists in the
model. But this contradicts the fact that each M∗

i was independentM.
We also claim that M∗ is maximal independent. Suppose it were not,

for a contradiction. Then there would be an independent matching whose
vertex set properly contains V (M∗). Let gn be the vertex of least index not
in V (M∗) that is in the larger independent matching. Now we have

∃Y [Y is independent ∧ V (Y ) ) V (M∗
n) ∧ gn ∈ V (Y )].

Because the statement “Y is independent” is Π1
1, the above is a Σ1

2 sentence.
SinceM is a β2-model and the above Σ1

2 sentence is true outside ofM,
it must be true in M (and this is the point where we use the full power of
the β2-model). However, recall that by our definition of the Mi, there must
not be an independentM matching which extends Mn and also contains gn
(and V (Mn) = V (M∗

n)). So we have a contradiction, and therefore M∗ is a
maximal independent matching of G.

One might wonder if the proof above could be simplified by using a less
complex (than Π1

1) way of saying that a matching is independent. However,
using an argument similar to those in Section 5, it is easy to see that de-
ciding whether a given matching in a computable graph is independent is
Π1

1-complete.
It is now possible to give an upper bound on the strength of PM. The

system Π1
2-CA

+
0 is the system that permits ω-many iterated applications of

Π1
2-CA0.
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Theorem 4.8. Π1
2-CA

+
0 proves PM.

Proof. The idea of the proof is the same as Steffens’. Let G be a graph
that satisfies condition (A) and suppose V (G) = {v0, v1, . . .}. Apply MIM to
obtain a maximal independent matching M0 of G. Define G1 = G \ V (M0),
which continues to satisfy condition (A) by Lemma 4.3. Apply the second
part of Lemma 4.3 (which entails another application of MIM) to obtain a
matching M1 contained in G1 which matches the vertex of least index not
matched by M0, such that G2 = G1 \ V (M1) still satisfies condition (A). At
this point, we do not know whether G2 has nontrivial independent subgraphs
(or unmatched vertices), so we start the process over again with G2 as the
new G.

Iterate the above process to obtain a sequence of matchings {Mn}n∈N,
with pairwise disjoint vertex sets, such that every vertex of G is matched
by some Mi. We see that M =

⋃
n∈NMn is the desired perfect matching of

G. Notice that we have potentially applied MIM ω-many times in the above
construction.

This proof appears to do more work than is actually needed. Because PM
is true, the graph G has a perfect matchingM . BecauseM covers each vertex
ofG, it trivially satisfies the definition of an independent matching, soM is an
independent matching of maximal support. But that means that, as long as
PM is true, the first application of MIM in its proof already yields the perfect
matching of G. The rest of the construction (which involved finding infinitely
many new maximal independent matchings) was, in retrospect, unnecessary.
We will return to this observation in Section 4.2.

Indeed, the complexity of PM means that this upper bound cannot be
sharp. We will use a generalization of a well known fact, following the pre-
sentation of Marcone [13]. Although we will only need the cases for k = 1
and k = 2 in this paper, we include a general statement of the property for
completeness.

Proposition 4.9. Let k ≥ 1. No Π1
k+1 statement that is consistent with

ATR0 can imply Π1
k-CA0, even over ATR0.

Proof. Consider the sentence ∀Xψ(X), where ψ(X) is Σ1
k and suppose that

the theory T consisting of ATR0 and ∀Xψ(X) is consistent.
Suppose toward a contradiction that ∀Xψ(X) implies Π1

k-CA0 over ATR0.
Then T proves the existence of a countable-coded βk-modelM. By definition,
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M |= ψ(X) for each X ∈ M, soM |= ∀Xψ(X). Since every β-model (and
so every βk-model) is a model of ATR0, we have thatM is a model of T .

But by Gödel’s Second Incompleteness Theorem, no consistent theory
T which implies Π1

1-CA0 can prove its own consistency, contradicting the
assumption that ∀Xψ(X) implies Π1

k-CA0 over ATR0.

Recall that the statement of PM itself has the form

∀X
[
(∀Y1)(∃Y2)θ(X, Y1, Y2)→ ∃Z ψ(X,Z)

]
,

with θ, ψ arithmetical, and so is equivalent (after prenexing) to a Π1
3 formula.

Also, since Π1
2-CA

+
0 implies PM, it is consistent with ATR0. Thus we get the

following immediately from Proposition 4.9.

Corollary 4.10. PM does not imply Π1
2-CA0, even over ATR0.

4.2. A proof of MM

We now turn our attention to the strongest version of PM studied in this
paper, the statement that every graph has a matching of maximal support.
To prove this, we will need another lemma of Steffens.

Lemma 4.11 (Lemma 5 of Steffens [5]). The following is provable in ACA0.
A graph G satisfies condition (A) iff for every independent subgraph G′ of G
and for every vertex s ∈ V (G)\V (G′), there exists a vertex v ∈ V (G)\V (G′)
such that {s, v} ∈ E(G).

Proof. It is straightforward to check that the proofs of Steffens’ Lemmas 4
and 5 from [5], the latter relying on the former, both hold in ACA0.

Theorem 4.12. MIM + PM implies MM over RCA0.

Proof. Fix a countable graph G. Applying MIM, we obtain a maximal inde-
pendent subgraph I ⊆ G and a corresponding independent matching M .

If I = G, then we have a perfect (hence maximal) matching and we are
done. So suppose I 6= G, and let N ⊆ V (G) \ V (I) be the set of ver-
tices with no neighbors in G \ I. (The vertices in N are not necessarily
isolated in G as they may have neighbors in I itself.) Consider the subgraph
H = V (G) \ (V (I) ∪ N). We claim that H does not have any nonempty
independent subgraphs. Indeed, since any nonempty independent subgraph
G′ of H is also a nonempty independent subgraph of G \ I, G′ could there-
fore be combined with I to form a new, larger independent subgraph, by
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Lemma 4.2(2), which would contradict the maximality of I. Therefore the
only independent subgraph of H is the empty subgraph, and clearly each ver-
tex in H has a neighbor in H, so H satisfies condition (A) by Lemma 4.11.

Applying PM, we obtain a perfect matching M̂ of H. First, note that
M ∪ M̂ is a matching because V (M) and V (M̂) are disjoint sets of vertices.
We wish to show thatM∪M̂ is a matching of G of maximal support. Suppose
that {s, v} is an edge covering one of the vertices ofN . By definition ofN , the
second vertex must be contained in I = V (M), whereM was an independent
matching. But this contradicts Lemma 4.5, applied to the graphs G and I.
Thus, M ∪ M̂ must be a maximal matching of G.

Theorem 4.12 is important for two reasons. First, it allows us to use the
upper bounds for PM and MIM to obtain an upper bound for MM. Second,
and more surprisingly, the fact that MM has lower sentence complexity than
MIM will allow us to separate both principles from Π1

2-CA0.

Corollary 4.13. Π1
2-CA

+
0 proves MM over RCA0, and MM does not imply

Π1
2-CA0, even over ATR0.

Proof. Π1
2-CA

+
0 proves PM by Theorem 4.8, and Π1

2-CA0 proves MIM by The-
orem 4.7. Thus, Π1

2-CA
+
0 proves MM by Theorem 4.12.

Note that MM is the following Π1
3 sentence: for each G, there is an M

such that for any other M ′, if M and M ′ are both matchings, then V (M)
is not strictly contained in V (M ′). Therefore, since MM is true and thus
consistent with ATR0, MM does not imply Π1

2-CA0 by Proposition 4.9.

Because maximal matchings are independent, the upper bound on MM
also applies to MIM.

Proposition 4.14. MM implies MIM over RCA0.

Proof. Any maximal matching M of a graph G must be independent. To see
why, consider any M -augmenting path P . If P were a proper augmenting
path, then M ∆ P would be a matching with strictly greater support than
M , which contradicts the fact that M is a maximal matching. Because
every independent matching is also a matching, the existence of matchings
of maximal support implies the existence of maximal independent matchings.

Corollary 4.15. MIM does not imply Π1
2-CA0, even over ATR0.
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Proof. By Proposition 4.14, MM implies MIM over RCA0. Since MM does
not imply Π1

2-CA0, it follows that MIM cannot imply Π1
2-CA0.

It is not clear whether any of MM, MIM, or PM are equivalent over RCA0.
To shed light on this, note that the proof of MM required both PM and MIM.
However, only a very special case of PM is used in the proof. It is natural to
ask exactly how much of PM is actually used in the proof of MM.

Statement 4.16. Let (?) denote the statement “if G satisfies condition (A)
and G has no nonempty independent subgraphs, then G is empty.”

Note that (?) is exactly the statement that the first maximal independent
matching obtained in the proof of PM is a perfect matching of the graph,
since it asserts that G\V (M) = ∅. This tells us immediately that MIM+ (?)
implies PM. By Theorem 4.12, we immediately get the following.

Corollary 4.17. MIM + (?) implies MM over RCA0.

Actually, (?) can simply replace PM in the proof of Theorem 4.12, since
we are really only using (?) when we prove that the maximal independent
matching is itself maximal. To see why, recall that the subgraph H from the
proof of Theorem 4.12 has no nonempty independent subgraphs and has no
isolated vertices, so satisfies condition (A) by Lemma 4.11. By (?), H is the
empty subgraph so its perfect matching M̂ exists (and is empty), as needed
in the proof of Theorem 4.12.

In fact, (?) really is a special case of PM.

Proposition 4.18. PM implies (?) over RCA0.

Proof. Let G be a graph which satisfies condition (A) and has no nonempty
independent subgraphs. By PM, G has a perfect matching M . In other
words, V (M) = V (G). In addition, note that M is maximal, so M is an
independent matching by the proof of Proposition 4.14, and so V (M) is an
independent subgraph ofG. By assumption, G has no nonempty independent
matchings, and so we must have V (M) = ∅. Because V (M) = V (G), G must
be empty.

On the face of it, (?) is a straightforward, true principle. Thus, it is
reasonable to conjecture that it has a proof in Π1

1-CA0. We will show in
Theorem 5.6 that MIM implies Π1

1-CA0, so such a proof of (?) would imply
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the equivalence of MIM and MM. In addition, if (?) is provable in Π1
1-CA0,

then it may be possible to prove PM by iterating a contrapositive version of
(?) transfinitely many times.

Conjecture 4.19. MM and MIM are equivalent over RCA0, Π1
1-TR0 proves

PM, and Π1
2-CA0 proves MM.

Although apparently simple, (?) is surprisingly difficult to either prove or
to code into. No direct proof of (?) is known to the authors, other than its
proof from PM.

Question 4.20. What is the exact strength of (?)? Does (?) imply PM, or
can (?) be separated from PM using a forcing construction?

Recall that MIM + (?) implies PM. Thus even a proof of (?) in Π1
2-CA0

would yield an improved upper bound on PM and hence on MM.

5. Lower bounds for matchings in general

In this section, we establish lower bounds on the complexity of the prin-
ciples whose upper bounds were given above.

In many of these reversals, we uniformly convert a tree T into what we
will call its doubling tree T̂ . The idea is that each vertex v in T except
the root gets replaced by two vertices, connected by an edge (we call this
a doubling edge). The bottom vertex of that edge is a child of the parent
of v; the top vertex of the edge is the parent of every child of v. Note
that Aharoni, Magidor, and Shore [1] also construct this type of tree (in
their Theorem 4.13). Clearly T has an infinite path if and only if T̂ has an
infinite path. More importantly, there is a correspondence between paths in
T , matchings of T̂ , and condition (A).

Lemma 5.1. Let T ⊆ N<N be a tree, and let T̂ be its doubling tree. Then
the following are equivalent over RCA0:

1. T has an infinite path.
2. T̂ has a perfect matching.
3. T̂ satisfies condition (A).

Proof. (1 → 2). Suppose there is an infinite path P through T . We define
a perfect matching M of T̂ as follows. For every edge in P , put the corre-
sponding edge from T̂ intoM . M is a matching since the corresponding path
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in T̂ alternates between edges in T and the added doubling edges. For each
vertex not on P , include its doubling edge in M (the root is on P , so every
vertex not on P is adjacent to exactly one doubling edge). Note that no two
doubling edges are adjacent in T̂ . Now every vertex in T̂ is matched by M ,
making it a perfect matching.

(2→ 3). This holds in RCA0 for all graphs (Proposition 1.3).
(3→ 1). Let M be the matching consisting of exactly the doubling edges

in T̂ . This leaves precisely the root r of T̂ unmatched. By condition (A), there
is an M -augmenting path starting at r. Since no other vertex is unmatched,
this path must be infinite, and corresponds to an infinite path back in T .

5.1. Lower bounds for PM

Theorem 5.2. PM implies Σ1
1-AC0 over RCA0.

Proof. In Proposition 3.5, we proved that the restriction of PM to locally
finite graphs is equivalent to ACA0, so we may work over ACA0. Let 〈Tk : k ∈
N〉 be a sequence of trees Tk ⊆ N<N such that ∀k [Tk has an infinite path].
Let 〈T̂k : k ∈ N〉 be the associated sequence of doubling trees, and define
G =

⊔
k∈N T̂k. By Theorem V.1.7′ of [11], it suffices to show there exists a

sequence 〈gk : k ∈ N〉 so that

∀k [gk is an infinite path through Tk].

We claim thatG satisfies condition (A). In the proof of Lemma 5.1, we saw
that T̂i satisfies condition (A) if and only if Ti has an infinite path. Since each
Ti has an infinite path, T̂i satisfies condition (A) for each i ∈ N. It is easy to
see, working in ACA0, that a disjoint union of graphs satisfying condition (A)
also satisfies condition (A), and therefore G must satisfy condition (A). This
proves the claim.

Then by PM, there is a perfect matching M of G. This allows us to
uniformly define an infinite path Pk through the doubling tree T̂k as follows.
Starting at the root, follow the matching up the tree. The root vertex is
matched by M to exactly one child. That vertex has only one child, via its
doubling edge. This child is matched by M to exactly one of its children,
and so on. By restricting each Pk to Tk, we obtain a sequence 〈gk : k ∈ N〉,
where gk is an infinite path through Tk for each k ∈ N.

In the proof above, we do not appear to use the full strength of PM. As we
have already noted, some of the complexity of PM appears to arise from the
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complexity of deciding if condition (A) holds. But in the proof above, it was
computable to show that each T̂i satisfied condition (A), and arithmetical to
show that the union of a sequence of pairwise disjoint graphs, all of which
satisfy condition (A), satisfies condition (A).

It is important to note that deciding whether condition (A) holds for
countable graphs is much harder in general. Indeed, deciding whether a
computable graph satisfies condition (A) is Σ1

1-hard.

Proposition 5.3. The set of indices of computable graphs which satisfy con-
dition (A) is Σ1

1-hard.

Proof. Since the set of indices for trees with infinite paths is Σ1
1-complete (by

Theorem 16.XX in [9]), it suffices to show that given a computable tree T ,
we can find a computable graph G, such that T has an infinite path if and
only if G satisfies condition (A). Given T , let G = T̂ , the doubling tree of T .
By Lemma 5.1 we have that T̂ satisfies condition (A) if and only if T has an
infinite path, and we are done.

While condition (A) has a Π1
2 definition, it cannot be Π1

2-complete. To
see why, recall the statement of PM: G satisfies condition (A) if and only if G
has a perfect matching. Since deciding whether G has a perfect matching is
Σ1

1, it is thus possible to decide if condition (A) holds using a Σ1
1 statement.

For at least some classes of graphs, condition (A) is equivalent over RCA0

to a sentence of simpler complexity. In the special case of doubling tree
graphs, Lemma 5.1 says that RCA0 proves the equivalence between satisfy-
ing condition (A) and having a perfect matching. Since the disjoint union
of graphs satisfying condition (A) continues to satisfy condition (A), the
restriction of PM to disjoint unions of doubling trees is actually Π1

2.
More generally, the reversal from PM to Σ1

1-AC0 can be seen as using only
the statement that the union of a sequence of pairwise disjoint graphs, all of
which have perfect matchings, has a perfect matching. This can be viewed
as a Π1

2 version of PM, which we refer to as Collection of PM.

Corollary 5.4. The following are equivalent over RCA0:

1. Σ1
1-AC0

2. (Collection of PM) Fix a sequence of pairwise disjoint graphs 〈Gi〉. If
Gi has a perfect matching for each i, then G =

⊔
Gi has a perfect

matching.
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Proof. (1 → 2) is an easy application of Σ1
1-AC0. (2 → 1) is a consequence

of the proofs of Proposition 3.5 (which shows that Collection of PM implies
ACA0) and Theorem 5.2.

Of course, Steffens selected condition (A) for its graph-theoretic content,
rather than for its formula complexity.

Question 5.5. Is there a natural ∆1
2 statement equivalent to condition (A),

which does not involve simply checking for the existence of a perfect match-
ing?

If this is the case, it would yield a version of full PM whose complexity
would be Π1

2, and hence this version of PM would not imply Π1
1-CA0, even

over ATR0 (Proposition 4.17 from [1]).

5.2. The strength of MIM and Sequential PM
Theorem 5.6. MIM implies Π1

1-CA0 over RCA0.

Proof. First, we claim that MIM implies ACA0. Using the same construction
as in the proof of Proposition 3.5, we get a graph consisting of disjoint paths
of length 1 or 3. Since each disjoint path has as its maximal independent
matching a perfect matching, the maximal independent matching of the en-
tire graph will be its perfect matching, from which we can define the range
of the given function.

We may now work over ACA0. Let 〈Ti : i ∈ N〉 be a sequence of trees
Ti ⊆ N<N. We wish to define a set Z such that i ∈ Z if and only if Ti has
an infinite path. Form the associated sequence 〈T̂i : i ∈ N〉 of doubling trees.
Let G be the disjoint union G =

⊔
T̂i, and by MIM, let M be a maximal

independent matching for G.
Consider M restricted to T̂i. Note that if this is not a perfect matching,

then T̂i cannot have any perfect matching, since such a perfect matching
would be an independent matching of larger support. Thus M restricted to
T̂i is a perfect matching if and only if T̂i has a perfect matching, which by
Lemma 5.1 occurs if and only if Ti has an infinite path.

Since ACA0 can form the set of i such that M restricted to T̂i is a perfect
matching of T̂i, we get the desired set Z.
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Recall from Statement 2.1, Sequential PM asserts that for each sequence
of disjoint graphs 〈Gi : i ∈ N〉, there is a sequence of matchings 〈Mi : i ∈ N〉
such that for all i, if Gi satisfies condition (A), thenMi is a perfect matching
of Gi.

Sequential PM clearly implies PM over RCA0, and it is natural to conjec-
ture that Sequential PM is strictly stronger than PM. Although less common
in reverse mathematics, principles like Sequential PM sometimes occur in
the study of Weihrauch principles. There, Sequential PM is called the “par-
allelization” of the “total continuation” of PM (see [14], Section 8, for another
similar principle).

Proposition 5.7. MM implies Sequential PM over RCA0.

Proof. Assume MM, and let S = 〈Gi : i ∈ N〉 be a sequence of pairwise
disjoint graphs. Let G′ =

⊔
Gi be the effective disjoint union of the columns

of S, and apply MM to obtain a maximal matching M of G′. For each i, let
Mi be the restriction of M to Gi. To verify that 〈Mi : i ∈ N〉 is the desired
sequence of edge sets, fix i and suppose Gi = (V,E) satisfies condition (A).
For a contradiction, assume Mi is not a perfect matching of Gi. Then there
is a vertex s ∈ V \ V (Mi). Since Gi satisfies condition (A), there is an
Mi-augmenting path P starting at s. So Mi ∆ P is a matching of Gi that
improves the support of Mi, contradicting the fact that M is maximal.

In fact, our reversal from MIM to Π1
1-CA0 also goes through in Sequential

PM.

Proposition 5.8. Sequential PM implies Π1
1-CA0 over RCA0.

Proof. As Sequential PM implies PM which implies ACA0 (all over RCA0),
we may work over ACA0. Let 〈Ti : i ∈ N〉 be a sequence of trees. It suffices
to show that the set I = {i : Ti has an infinite path} exists.

For each tree Ti, consider its doubling tree T̂i. Applying Sequential PM
to 〈T̂i : i ∈ N〉, we obtain a sequence 〈Mi : i ∈ N〉 of edge sets with the
property that if T̂i satisfies condition (A), then Mi is a perfect matching of
T̂i.

Since it is arithmetical to decide if a given Mi is a perfect matching, we
can form {i : Mi is a perfect matching of T̂i} in ACA0. By Lemma 5.1, this
is the set of i such that Ti has an infinite path.
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In the previous section, we showed that MIM is provable in Π1
2-CA0, that

MM is provable in Π1
2-CA

+
0 , and conjectured that MM is provable in Π1

2-CA0.

Question 5.9. What is the exact strength of MM and, separately, of MIM?

6. Matchings for graphs with no infinite paths

In this final section, we will refine our analysis of PM by considering a spe-
cial case, whose strength is in the region of ATR0. We write Finite Path PM
to denote the restriction of PM to graphs with only finite paths.

Recall that much of the complexity of PM comes from the complexity
of condition (A). In the case of Finite Path PM, condition (A) is equivalent
to a Π1

1 formula (with the graph as a parameter), and Finite Path PM is
equivalent to a Π1

2 sentence. Moreover, the notion of “independent matching”
becomes arithmetical. These reductions in complexity result in significantly
improved upper bounds.

Theorem 6.1. Π1
1-CA0 proves MIM for graphs without infinite paths.

Proof. LetM be a countable coded β-model containing G. Using ACA0 and
a code for M as a parameter, construct a maximal independent matching
as described in our proof of full MIM (Theorem 4.8) which used a β2-model.
The key difference is that now the property of a matching being independent
is arithmetical in the matching and the graph, and therefore the formula
witnessing a counterexample to a matching being maximal independent is
Σ1

1 (with parameters from the model), and therefore reflects into or out of a
β-model. The rest of the proof is analogous.

Corollary 6.2. Π1
1-CA

+
0 proves Finite Path PM.

Proof. Because there are no infinite paths in G, the property of a matching
being independent is arithmetical and the property of a graph satisfying
condition (A) is Π1

1. Therefore the proof is analogous to the proof given
earlier of PM in Theorem 4.8, this time using countable coded β-models.

Because Finite Path PM is equivalent to a Π1
2 sentence, Proposition 4.9

with k = 1 shows that this upper bound is not optimal.

Corollary 6.3. Finite Path PM does not imply Π1
1-CA0, even over ATR0.
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6.1. Perfect matchings code hyperarithmetical sets
To obtain lower bounds, we will code hyperarithmetical sets into Finite

Path PM. We assume a basic knowledge of hyperarithmetical theory, and
refer the reader to Ash and Knight [15] for additional background.

We will identify each computable ordinal with its corresponding notation
in Kleene’s O. For each X ⊆ N and e ∈ OX , the set HX

e (referred to as
an HX-set) corresponds to the hierarchy resulting from recursively taking
jumps of X along the X-computable well order with notation e. As pointed
out by Aharoni, Magidor and Shore in [1], ATR0 is equivalent to

∀X ∀e [e ∈ OX → HX
e exists].

We will show that for each set X and for each e ∈ OX , there is an
X-computable graph GX

e which satisfies condition (A), such that any per-
fect matching of GX

e computes the set HX
e . As a result of the unifor-

mity of our construction, it follows that ATR is Weihrauch reducible to PM
(see Section 6.2). The Π1

2 nature of condition (A) complicates the reverse-
mathematical picture, which will be discussed at the end of the section.

We follow the general approach of [1], by defining graphs whose perfect
matchings code the truth or falsity of propositions. We also recursively show
how, given sentences whose truth is coded by the perfect matchings of coding
graphs, to define a new graph that codes the negation, conjunction, or quan-
tification of these sentences. We will then be able to code the relation n ∈ X
as a simple X-computable proposition. By coding negations, conjunctions,
and existentials of already coded propositions, we will code the membership
relation of the HX-sets corresponding to successor ordinals. Finally, by cod-
ing sequences of already coded propositions, we will code the membership
relation of the HX-sets corresponding to limit ordinals. Appealing to effec-
tive transfinite recursion, a consequence of the recursion theorem, we obtain
a single uniform computation that maps sets X and codes e to graphs GX

e .

Definition 6.4. A coding graph, illustrated in Figure 2, is a tuple 〈G, l, r, c〉
such that G is a connected graph and l, r, c ∈ V (G). We write G◦ = G \
{l, r, c} to refer to the “interior” of the coding graph. We also require that:
r is adjacent to a unique vertex in V (G◦), l is adjacent to a unique vertex
in V (G◦), and c is adjacent to l and r, but is not adjacent to any vertices in
V (G◦).
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G◦

l r
c

Figure 2: The coding graph 〈G, l, r, c〉

We will prove that each of the coding graphs that we recursively define
has a perfect matching, and hence satisfies condition (A). In fact, we will
prove that each graph we build will have a unique perfect matching.

Definition 6.5. Suppose that a coding graph 〈G, l, r, c〉 has a unique perfect
matching. We say that this graph codes true if the unique matching contains
the edge between G◦ and l, and that it codes false if the unique matching
contains the edge between G◦ and r.

The central vertex c is included to ensure that the coding graph will have
a matching. In each step of the recursive construction of coding graphs, we
will modify the coding graphs from the previous stage, both by removing
their central vertices and by adding new vertices and edges.

Lemma 6.6.
(1) There is a coding graph with a unique matching that codes true.
(2) There is a single computable procedure which, given any coding graph with
a unique matching that codes a predicate P , returns another coding graph with
a unique matching that codes the negation of P .

Proof. (1) To code “true,” we define a coding graph 〈G, l, r, c〉 with three
additional vertices {x, y, z}, and edges consisting of the cycle x-y-r-c-l-x,
together with the single edge {y, z}. This graph is illustrated in Figure 3,
left. Note that the interior of this graph has vertex set V (G◦) = {x, y, z}.
Starting with the edge {y, z}, it is easy to check that this graph has a unique
perfect matching.

(2) Suppose we are given a coding graph 〈G, l, r, c〉 coding P . We define a
coding graph 〈G′, l′, r′, c〉 that codes ¬P by setting G′◦ = G\{c}, connecting
l to l′, and connecting r to r′. This graph is illustrated in Figure 3, right.

By assumption, 〈G, l, r, c〉 has a unique perfect matching. To see why
the new graph 〈G′, l′, r′, c〉 has a unique perfect matching, note that in any
perfect matching, exactly one of l or r matches into G◦. Without loss of
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generality, assume that l matches into G◦. Then r needs to be matched to
r′, and c needs to be matched to l′, thus yielding a unique perfect matching.

Finally, we show that this new graph correctly codes ¬P . If the original
graph G codes true, then the unique matching of G′ must match l into G◦,
which forces {r, r′} to be in the matching, so G′ codes false as desired. On
the other hand, if G codes false, then a similar argument shows G′ codes
true.

yx z

l r
c

G◦l r

l′ r′

c

Figure 3: Left a graph that codes “true”. Right, a graph that codes negation.

Lemma 6.7. There is a single computable procedure which, given any two
coding graphs 〈Gi, li, ri, ci〉, i ∈ {1, 2}, each with a unique perfect matching,
and where Gi codes Pi, returns another coding graph 〈G, l, r, c〉 with a unique
matching, that codes ¬P1 ∧ P2.

Together with the ability to code negations, it follows that we can construct
coding graphs to code P1 ∧ P2, P1 ∨ P2, and P1 → P2.

Proof. Given the coding graphs 〈Gi, li, ri, ci〉 coding Pi, i ∈ {1, 2}, define
a coding graph 〈G, l, r, c〉 that codes ¬P1 ∧ P2 by removing the vertices ci,
then adding a new vertex rr, and including the cycle l1-l2-r1-r2-rr-r-c-l-l1
(Figure 4).

By assumption, the component graphs G1 and G2 have unique perfect
matchings. It is straightforward to show that these extend to a unique perfect
matching of G. There are four cases, depending on the truth value coded by
the Gi.

For example, if G1 and G2 both code true, then l1 matches into G1 and
l2 matches into G2. Then the matching must include {l, c}, {r, rr}, and
{r2, r1} leading to a unique perfect matching where G codes false, matching
the desired truth value of ¬T ∧ T ≡ F . The proofs of the other three cases
are similar.

31



G◦1

l1 r1

G◦2

l2 r2

l r
c

rr

Figure 4: Coding ¬P1 ∧ P2, where Pi is coded by 〈Gi, li, ri, ci〉

In previous sections of this paper, we have often taken the union of a
fixed sequence of graphs containing disjoint vertex sets. In this section, we are
defining a large class of graphs by transfinite recursion. There is no guarantee
that the different graphs produced in this way will have disjoint vertex sets.
We will therefore use the computable join operation

⊕
Gi = {〈j, i〉 : j ∈ Gi}

when coding sequences of propositions.

Lemma 6.8. Let 〈Gi〉 be a sequence of coding graphs, each with a unique
matching. Then

⊕
Gi can be seen as coding membership in the set {i : Gi

codes true}.

Proof. Because the graphs induced by the computable join of the vertex
sets will be disjoint, if all of the given graphs satisfy condition (A) and
have perfect matchings, then the union will satisfy condition (A) and have
a perfect matching. Furthermore, any perfect matching of the whole graph
will be unique, and code the truth of all the component propositions.

Lemma 6.9. There is a single computable procedure which, given a uniformly
computable sequence of coding graphs 〈Gn, ln, rn, cn〉, each with a unique
matching and each coding a predicate P (n), returns a coding graph with a
unique matching that codes the truth of the sentence (∃n)P (n).

Proof. For technical reasons, we must begin by using negation and conjunc-
tion to obtain a new sequence of coding graphs Ĝi which code the predicates
P̂ (i) = P (i) ∧ ¬P (i − 1) ∧ · · · ∧ ¬P (1). Then at most one of the Ĝi codes
true (and if there is exactly one, it will be the Ĝi with i least possible). Note
also that (∃n)P (n) ≡ (∃n)P̂ (n).
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r̂1

r̂2

r̂3

...
...

l r

c

x y z

Ĝ◦1

Ĝ◦2

Ĝ◦3

Figure 5: Coding (∃i)P (i) in the case where P (i) is true for at most one i.

We can now create a new coding graph 〈G, l, r, c〉 that will code (∃n)P̂ (n).
We modify and combine the coding graphs Ĝi as in Figure 5: For each i, the
vertices l̂i and ĉi are removed. The vertices of the graph being constructed
consist of the remaining vertices of the coding graphs Ĝ◦i together with new
vertices: x, y, z. for each i, the unique vertex in Ĝ◦i that was adjacent to l̂i is
set adjacent to the single vertex y, and all the vertices r̂i are set adjacent to
the separate vertex z. Finally, we include the path y-x-l-c-r-z.

We must show that there exists a unique matching of this graph, and that
it codes (∃n)P̂ (n). Since at most one of the predicates P̂ (i) is true, we have
two cases.

First, suppose there exists exactly one k such that P̂ (k) is true. Then
from the unique perfect matching of Ĝk, we get that y must be matched
into Ĝ◦k, which means r̂k must be matched to z and all other r̂i must be
matched into their respective Ĝ◦i . Furthermore, {r, c} and {l, x} must be in
the matching, giving a unique perfect matching of G.

Second, suppose that all P̂ (i) are false. Then from the unique perfect
matchings of each Ĝk, each r̂i must be matched into its respective Ĝ◦i . This
means {z, r}, {c, l}, and {x, y} must be in the matching, again giving a
unique perfect matching of G.

Suppose we have coding graphs G0, G1, G2, . . . such that Gi codes i ∈ X,
and that we wish to code ∃n [ϕXe,n(e)↓]. Unfortunately, our procedure does
not have access to the set X itself. Because X is only coded, it can only be
computed from perfect matchings of the Gi.
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Lemma 6.10. There is a uniformly computable procedure which, given any
sequence of graphs 〈Gi〉 coding the predicates i ∈ X and given any e ∈ N,
returns a single graph that codes the predicate e ∈ X ′.

Proof. As usual, we adopt the convention that ϕXe,n(e)↓ if and only if ϕX�ne,n (e)↓.
Furthermore, we will use the characteristic function of X in the place of X
and denote an arbitrary initial segment of X by σ, a finite string of 0’s and
1’s. Recall that there is a uniformly computable function f such that for
each e, n ∈ N and each σ ∈ 2n, ϕσe,n(e) = ϕf(e,σ),n(e). Thus the statements
ϕf(e,σ),n(e)↓ clearly have uniformly given coding graphs.

Suppose we wished to perform a computation relative to X � n. Without
knowing the perfect matchings of the Gi, each string σ ∈ 2n is a possible
initial segment of X. To code ϕXe,n(e)↓ without any knowledge of X, we code
the following statement, which accounts for every possible initial segment σ
of X.

∧
σ∈2n

 ∧
σ(j)=1

(j ∈ X) ∧
∧

σ(j)=0

¬(j ∈ X)

→ ϕf(e,σ),n(e)↓


Note that for each σ 6≺ X, its corresponding antecedent will be false, so

that particular conjunction will be true. For the unique σ ≺ X of length n,
its corresponding antecedent will be true, and the consequent will determine
the truth value of the whole conjunction. To determine if ϕXe (e)↓, simply
code ∃n [ϕXe,n(e)↓] as usual.

Putting everything together, we obtain the following.

Theorem 6.11. Let X ⊆ N. For every e ∈ OX , there exists an X-
computable graph GX

e such that HX
e is computable in any perfect matching of

GX
e .

Proof. Lemmas 6.6 and 6.8 provide a uniform procedure for coding com-
putable sets by sequences of graphs. For successor ordinals, Lemma 6.10
shows that given a sequence of graphs coding a set X, we can uniformly find
a sequence of graphs coding X ′. For limit ordinals, given any computable
simultaneous sequences of graphs 〈Gi,n〉 coding the sets Xn, we can uniformly
produce a sequence of graphs coding the effective join

⊕
Xn = {〈n, i〉 : i ∈

Xn}. Here we can simply take 〈G〈i,n〉〉. By effective transfinite recursion, a
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consequence of the recursion theorem, there is therefore a uniformly com-
putable sequence such that for every e ∈ OX , there is a graph GX

e , which is
computable in X, such that HX

e is computable in any perfect matching of
GX
e .

Implicit in the above construction is the fact that for each e ∈ OX ,
GX
e satisfies condition (A). Because we have given a transfinite recursive

construction that preserves condition (A) at each successor and limit sage, it
follows by transfinite induction that all resulting graphs satisfy condition (A).

Because condition (A) is Π1
2, the transfinite induction used above is Π1

2-
transfinite induction. The system, known as Π1

2-TI0, is slightly weaker than
Σ1

2-DC0, which is equivalent to ∆1
2-CA0 plus Σ1

2-IND by Theorem VII.6.9 of
[11]. Thankfully, the level of induction can be reduced using the fact that
these coding graphs do not have any infinite paths.

Lemma 6.12. The following hold over Π1
1-TI0.

1. For any e, if e ∈ OX , then the coding graph GX
e has no infinite paths.

2. For any e, if e ∈ OX , then the coding graph GX
e satisfies condition (A).

Proof. The proof of (1) is a straightforward transfinite induction argument.
Using (1), the transfinite induction used in (2) becomes Π1

1.

This gives us the following strengthened result.

Corollary 6.13. Finite Path PM + Π1
1-TI0 implies ATR0 over RCA0.

Proof. This is a direct consequence of Theorem 6.11, together with the above
lemma. As PM already implies ACA0 over RCA0, everything can be done over
ACA0. Fix a set X and an e ∈ N. Assume e ∈ OX . Apply Theorem 6.11
to obtain the coding graph GX

e . By Lemma 6.12, together with Π1
1-TI0, we

have that GX
e satisfies condition (A). Then Finite Path PM provides a perfect

matchingM of GX
e , from which we can compute HX

e , again by Theorem 6.11.

Although the results above do not give a complete reversal from PM to
ATR0, they will enable us to separate Finite Path PM, and there for PM, from
Σ1

1-AC0. By Theorem VIII.5.12 of [11], Π1
1-TI0 is equivalent to Σ1

1-DC0 over
ACA0. Then by Theorem VII.6.6 of [11], Σ1

1-DC0 implies Σ1
1-AC0. If Σ1

1-AC0

implied PM, then we would have that Σ1
1-DC0 implies Finite Path PM, but

we show this is not the case.
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Corollary 6.14. Σ1
1-DC0 does not imply Finite Path PM. In particular, PM

is strictly stronger than Σ1
1-AC0.

Proof. Recall that HYP denotes the ω-model consisting of the hyperarith-
metical sets. We know that HYP is an ω-model of Σ1

1-DC0 (by Corollary
VIII.4.17 of [11]) but not on ω-model of ATR0 (by Proposition V.2.6 in [11]).
Thus Σ1

1-DC0 does not imply ATR0. But by Corollary 6.13, Finite Path PM
plus Σ1

1-DC0 implies ATR0, so it cannot be that Σ1
1-DC0 implies Finite Path PM.

Note that by Corollary 5.4, Collection of PM is equivalent to Σ1
1-AC0, so

neither PM nor Finite Path PM follow from Collection of PM.

Question 6.15. Does Finite Path PM imply ATR0 over RCA0? This would
be true if there is a reversal from Finite Path PM to Σ1

1-DC0 over Σ1
1-AC0.

Does ATR0 prove either Finite Path PM or PM?

Our results show that Finite Path PM is quite close in strength to ATR0.

Conjecture 6.16. Finite Path PM is equivalent to ATR0 over RCA0.

6.2. Weihrauch reductions
Although it is not the main focus of our paper, the reversal in previous

section is perhaps best stated in a special case of the language of Weihrauch
reducibility. For a detailed introduction and background, see [16].

In the language of Weihrauch reducibility, mathematical problems are
represented by multivalued partial functions, which are written as f : ⊆ A⇒
B, where A,B contain of mathematical objects, represented as subsets of N
via the standard codings. For each instance X ∈ dom(f), f(X) is the set
of all solutions to this instance of the problem. A realizer for the problem
f : ⊆ A⇒ B is a function F : ⊆ A→ B that assigns exactly one solution to
each instance of the problem (for each X ∈ A, F (X) is an F (X) ∈ f(X)).

In this language, PM corresponds to the partial multivalued function
f : ⊆ Graphs ⇒ Matchings whose domain is the set of graphs satisfying
condition (A) and so that for each such graph X, f(X) is the set of all
perfect matchings of X. A realizer F of this f is any function that assigns a
specific perfect matching to each X ∈ dom(f). To compare PM with ATR0, it
suffices to use a special case of the Weihrauch Reducibility defined in [16, 14].
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Definition 6.17. Let f, g be multivalued functions representing problems
in countable mathematics. Then f is Weihrauch reducible to g if there are
computable functions K,H : ⊆ NN → NN such that for any G, if G is a
realizer for g, then the function defined by F (p) = K〈p,G ◦ H(p)〉 is a
realizer for f .

In [14], Kihara, Marcone and Pauly give a definition for the Weihrauch
principle ATR, and show that it is strongly Weihrauch equivalent to the prin-
ciple “Unique Closed Choice on Baire Space,” written UCNN . And while there
is no single Weihrauch principle which can be considered the Weihrauch ana-
logue of ATR0, the principle UCNN , and therefore ATR, is Weihrauch equiva-
lent to many principles which are equivalent to ATR0 in reverse mathematics.

In particular, we will use a result of Goh [17], that ATR is Weihrauch
equivalent to the problem whose instances are pairs (L, A) such that L =
(L, 0L, S, p) is a labeled well-ordering and A ⊆ N, and such that for each
instance (L, A), the unique solution is the jump hierarchy 〈Xa〉a∈L starting
with A.

Corollary 6.18. ATR is Weihrauch reducible to Finite Path PM.

Proof. Consider any pair (L, A), where L = (L, 0L, S, p) is a labeled well-
ordering and A ⊆ N. Perform a similar construction used to prove Theo-
rem 6.11, using (L⊕A)-transfinite recursion on L to obtain a graph G such
that any perfect matching of G codes the jump hierarchy on L which starts
with A. We can use transfinite induction to show that G has no infinite
paths, and that G satisfies condition (A). By Finite Path PM, G has a per-
fect matching M , which codes the jump hierarchy on L starting with A, as
desired.
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