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Introduction Coding the Jumps of a Set Moving Forward

Definition
Let G = (V,E) be a countable graph. A matching of G is a set
M ⊆ E of edges such that no two distinct edges of M are incident
with the same vertex. The support of M , denoted by V (M), is the
set of matched vertices (i.e., vertices incident with an edge of M).

· · ·
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Definition
Given a matching M , a path P starting at a vertex s 6∈ V (M) is
M -augmenting if its edges alternately lie in M and E \M , and P
either (1) is infinite or (2) terminates in a vertex v 6∈ V (M).
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Condition (A)
A graph G = (V,E) is said to satisfy condition (A) if for every
matching M and every vertex s 6∈ V (M) there is an
M -augmenting path starting at s.

Theorem
Given X ⊆ N, there is an X-computable graph G satisfying
condition (A) such that for every computable ordinal α and every
perfect matching M of G, M ≥T X(α). In fact, G has a unique
perfect matching.

Conjecture
The following theorem of Steffens (1977) implies ATR0, over
RCA0:

If a countable graph G satisfies condition (A), then G has
a perfect matching.
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The coding graph for “n ∈ X”
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The coding graph for (¬P1) ∧ P2, where
Gi (i = 1, 2) is the coding graph for Pi
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The coding graph for ∃i P (i) (assuming at most one P (i) is true),
where Gi (i ∈ N) is the coding graph for P (i)
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Further Questions

Theorem (Steffens)
A countable graph G has a perfect matching if and only if G
satisfies condition (A), i.e., for every matching M and every vertex
s 6∈ V (M) there is an M -augmenting path starting at s.

1 Does the theorem of Steffens imply a stronger axiom system
than ATR0? More to the point, what is the theorem’s exact
proof-theoretic strength?

2 What is the strength of (the hard part of) Steffens’ proof,
involving maximal matchings and independent subgraphs?



Questions?

Thank you.
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