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Definition

Let G = (V, E) be a countable graph. A matching of G is a set

M C F of edges such that no two distinct edges of M are incident
with the same vertex. The support of M, denoted by V (M), is the
set of matched vertices (i.e., vertices incident with an edge of M).
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Definition

Given a matching M, a path P starting at a vertex s ¢ V(M) is
M -augmenting if its edges alternately lie in M and E'\ M, and P
either (1) is infinite or (2) terminates in a vertex v & V(M).
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Condition (A)

A graph G = (V, E) is said to satisfy condition (A) if for every
matching M and every vertex s € V(M) there is an
M-augmenting path starting at s.




Introduction
oce

Condition (A)

A graph G = (V, E) is said to satisfy condition (A) if for every
matching M and every vertex s € V(M) there is an
M-augmenting path starting at s.

Theorem

Given X C N, there is an X-computable graph G satisfying
condition (A) such that for every computable ordinal o« and every
perfect matching M of G, M > X (@ In fact, G has a unigue
perfect matching.
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Condition (A)

A graph G = (V, E) is said to satisfy condition (A) if for every
matching M and every vertex s € V(M) there is an
M-augmenting path starting at s.

Theorem

Given X C N, there is an X-computable graph G satisfying
condition (A) such that for every computable ordinal o« and every
perfect matching M of G, M > X (@ In fact, G has a unigue
perfect matching.

Conjecture
The following theorem of Steffens (1977) implies ATRy, over
RCA:
If a countable graph G satisfies condition (A), then G has
a perfect matching.
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The coding graph for 3i P(i) (assuming at most one P(i) is true),
where G; (i € N) is the coding graph for P(7)
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Assume that P(7) is true for some ¢ (say i = 1).
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Further Questions

Theorem (Steffens)

A countable graph G has a perfect matching if and only if G
satisfies condition (A), i.e., for every matching M and every vertex
s € V(M) there is an M-augmenting path starting at s.

@ Does the theorem of Steffens imply a stronger axiom system
than ATR(y? More to the point, what is the theorem’s exact
proof-theoretic strength?

@ What is the strength of (the hard part of) Steffens’ proof,
involving maximal matchings and independent subgraphs?



Questions?
®0

Thank you.
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