Definition

We define a **cardinality puzzle** to be any description of a set that explicitly mentions the cardinality of itself.

Puzzle

Let $A = \{2, |A|\}$. What is the cardinality of A?

Solution

Notice that A appears to have two elements. That is, |A| = 2. But this observation has the following consequence:

 $|A| = 2 \implies A = \{2, 2\} = \{2\} \implies |A| = 1$ Let's see what this now leads to:

 $|A| = 1 \implies A = \{2, 1\} \implies |A| = 2$ We are in a vicious cycle, so this puzzle seems to have no solution.

This is similar to the **Liar Paradox**: "This sentence is false." If it is indeed false, then it's true. And if it's true, then it's false again!

Puzzle

What is the cardinality of the set $A = \{2, 3, |A|\}$?

Solution

It appears to have three elements: |A| = 3. But this leads to:

$$|A| = 3 \implies A = \{2, 3, 3\} = \{2, 3\} \implies$$

This in turn leads to:

 $|A| = 2 \implies A = \{2, 3, 2\} = \{2, 3\} \implies |A| = 2$ That works! So this is not a paradox. It has a solution: the set is $A = \{2, 3\}$ and its cardinality is two.

Notation: We'll use a instead of |A|. So the above puzzle becomes $A = \{2, 3, a\}$.

Cardinality Puzzles

Tyler Markkanen* Springfield College

 $\Rightarrow |A| = 2$

Unique Solutions

The two cardinality puzzles $A = \{a, a + 1, a + 2\}$ and $A = \{4, 5, a, a + 1, 2a - 1\}$ have the unique solution $\{3, 4, 5\}$. But they have different **complexities**, i.e., number of possible cardinalities. How To Build Cardinality Puzzles Given a **selfish set**, say $S = \{1, 3, 4, 6\}$, let's find cardinality puzzles that have S as their unique solution.

No Solutions (Paradoxes)

Given any natural number $k \geq 1$, the cardinality puzzle $A = \{1, 2, \dots, k, k+2, a\}$ is a paradox.

Example (k = 1)

 $A = \{1, 3, a\}$ is a paradox.

Multiple Solutions

Given any natural number n > 2cardinality puzzle has n solutions $A = \{n, n+1, n+2, \dots, 2n-2,$

Example (n = 6)

 $A = \{6, 7, 8, 9, 10, a, a + 1, \dots, a + 5\}$ has six solutions.

2, the following
is:

$$a, a+1, \ldots, a+n-1$$
.
 $a + 5$ has six

Connection to Knights & Knaves

Knights-and-Knaves Problems: Suppose we encounter some trolls, and each troll is either a knight or a knave. Knights always tell the truth, and knaves always lie. Can we determine which one is which? **Troll 1**: We are both knights. **Troll 2**: Troll 1 is a knave.

This problem corresponds to the following two-set cardinality puzzle. (There is a method by which we solve the problem that is analogous too!)

Puzzle (Symbiotic Sets)

What are the cardinalities of the sets $A = \{1, a, b\}$ and $B = \{3, a\}$, where a = |A| and b = |B|?

Solution

Assume a = 3. Then b = 2 (based on the elements of A, which show that $b \neq 1$). But at the same time, $B = \{3, 3\} = \{3\}$. So b = 1. This is impossible! So $a \neq 3$. Thus, b = 2 (based on the elements of B). In the end, $A = \{1, 2, 2\} = \{1, 2\}$ and $B = \{3, 2\}$.

A was a "knave" (it lied about its cardinality), but Bwas a "knight." This is just like Troll 1 and Troll 2. **Puzzle (Three Sets & Three Trolls)**

T1: Only one of us is a knave. $A = \{1, 3, 5, 6, 7, b, c - 7\}$ $C = \{4, 7, 11, 12, \dots, 16, a, b, c\}$

T2: Only one of us is a knight. $B = \{7, 11, a, c\}$ **T3**: We are all knaves.

SPRINGFIELD COLLEGE V

*Joint work with Oscar Levin, University of Northern Colorado