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Recall that the cardinality of a finite set A, denoted |A|, is simply the number of ele-
ments in the set. Finding cardinalities is one of the main goals of combinatorics and
can be quite challenging in general, but for small sets, counting the number of elements
should be easy, right? For example, what is the cardinality of the following?

A = {2, |A|}.
Something strange is going on here. If |A| = 2, then we have A = {2} which only
contains one element. But if |A| = 1, then A = {1, 2} and thus contains two elements.
What are we to make of this?

Perhaps you want to say that sets are not allowed to contain their own cardinality.
But we surely agree that {1, 2, 3} is a set, and it definitely contains its cardinality, 3. In
fact, the following very nice problem appeared on the 1996 William Lowell Putnam
Mathematical Competition [1]:

Define a “selfish” set to be a set which has its own cardinality (number of
elements) as an element. Find, with proof, the number of subsets of {1, 2, . . . , n}
which are minimal selfish sets, that is, selfish sets none of whose proper subsets
is selfish.

We are not interested in solving this problem here (we encourage you to try it on you
own, it is quite approachable as Putnam problems go), but rather in pointing out that
there is nothing inherently wrong with the apparent self-reference in a set containing
its own cardinality.

And yet there is clearly something wrong with defining a set in terms of its own
cardinality, as our “paradox” above demonstrates. It is a symptom of the broader phe-
nomenon of self-reference, which often leads to puzzlement. One resolution is to sim-
ply not allow this, but where is the fun in that? Is it possible for a paper to use itself as
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one of its references? At least one paper has [3]. That’s this paper, so should it count
as an example?

To be clear, we are not claiming that we have found an error in mathematics. Defin-
ing a set by listing its elements belongs squarely within naive set theory. This is set
theory as it is taught and used in most undergraduate mathematics courses, and truth-
fully, how most mathematicians think of sets. Generally, it is sufficient for day-to-day
mathematics, but from a foundations of mathematics perspective, is necessarily lack-
ing.

The standard illustration of the problem with naive set theory is some variation of
Russell’s paradox: Is the set of all sets that are not elements of themselves an element
of itself? Here, the “set” A = {x : x /∈ x} is the problem: A ∈ A if and only if A /∈ A.
This is a lovely paradox, but not especially convincing to someone encountering sets
for the first time. Why would you think you could define a set of sets like that to start
with? Sets are collections of numbers! Our paradox above illustrates that even with
finite sets of numbers, naive set theory can be problematic.

The fix: limit what a set is by giving axioms that say exactly what sets you can
build. The common axioms used today are those of Zermelo-Fraenkel set theory (ZFC
consists of these axioms plus the axiom of choice; see [2] for a gentle introduction).
The relevant axiom for both Russell’s paradox and our paradox of finite cardinality is
comprehension. This is the axiom that allows us to construct sets through “set builder
notation.” Essentially, it says that sets exist of the form

{x ∈ z : ϕ(x)},

where z is a set that already exists and ϕ(x) is a formula with one free variable x.
Requiring a superset z, thus defining subsets of sets we have already built, resolves
Russell’s paradox. But not ours, which can be defined using set builder notation as,

A = {x ∈ Z : x = 2 or x = |A|}.

Rather, we need to pay attention to the other caveat of the axiom scheme, that ϕ(x)

does not contain free variables other than x (or in particular, that A does not occur
freely). Phew! Mathematics survives.

So the resolution to our paradox is that sets like ours don’t actually exist. But this
shouldn’t stop us from playing with them. We are reminded of the liar paradox: “this
statement is false” can neither be true nor false and thus is not a statement at all. How-
ever, allowing statements to talk about their own truth values leads to the enjoyable
knights and knaves puzzles popularized by Raymond Smullyan and others (for ex-
ample, see [5] or [6]). In what follows, we will see that similar puzzles can arise by
defining sets in terms of their own cardinalities. We will investigate when these puzzles
of cardinality have solutions and determine exactly which sets can be solutions to such
puzzles. Finally, we will take a closer look at how puzzles of cardinality compare to
knights and knaves puzzles.

Puzzles and solutions
Let’s solve some puzzles.

To fix terminology, we say that a cardinality puzzle is a description of a set that
explicitly mentions the cardinality of itself. When we write a cardinality puzzle, we
often use a = |A| as a notational convenience. For instance, our example from the
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introduction can be written as A = {2, a}. This is a paradox, so as a puzzle, it has no
solution. We will see that other outcomes are possible as well.

Try solving the following puzzles before looking at the solutions and discussions
about the lessons we can learn from these examples.

Puzzle 1. What is the cardinality of the set A = {2, 3, a}?
Puzzle 2. What is the cardinality of the set A = {1, 3, a}?
Puzzle 3. What is the cardinality of the set A = {4, a, 2a}?
Puzzle 4. What is the cardinality of the set A = {4, 5, a, a + 1, 2a − 1}?

As a general hint, a good place to start is to determine what the potential cardinal-
ities might be. If you viewed each set as a multiset, then the cardinality would just be
the number of terms displayed (which makes these puzzles a lot less entertaining). But
as a set, some or all of the terms containing a may coincide with constants or each
other, reducing the cardinality as a set. Once you know the reasonable values that a

can take on, you can check each for consistency or contradictions.

Solution to Puzzle 1. We are given A = {2, 3, a}. A quick inspection shows us that
the possible cardinalities are 2 and 3. If a = 2, then A = {2, 3}. This set has cardi-
nality 2, as assumed. If a = 3, then A = {2, 3}. Again this has cardinality 2, but that
contradicts the assumption a = 3. We conclude that the cardinality of A is 2. �

Since we found a cardinality that works, we can say this cardinality puzzle has a
solution, namely the resulting set A = {2, 3} with cardinality 2. In general, we will say
that a cardinality puzzle has a solution if there is a set of numbers that agrees with the
description. Whether we call the set or its cardinality the solution is immaterial: if you
have either of these, the other is completely determined.

Solution to Puzzle 2. Here, we solve A = {1, 3, a}. This puzzle has no solution,
despite the title of this paragraph. As with Puzzle 1, the only possible cardinalities
for A are 2 and 3. However, this time if a = 2, then by the definition of A, we have
A = {1, 3, 2}. So in that case we get a set of cardinality 3, which contradicts our
assumption that a = 2. Likewise, if a = 3, then A = {1, 3}, a set of cardinality 2,
leading to another contradiction. �

This puzzle can be generalized. Fix an integer k ≥ 1 and consider,

A = {1, 2, 3, . . . , k, k + 2, a}.
By inspection, the set A has cardinality k + 1 or k + 2. But if a = k + 1, then A has
k + 2 elements, and if a = k + 2 then A has k + 1 elements (a contradiction in both
cases).

So far, we have witnessed puzzles with a unique solution or no solution at all. Could
there be puzzles with more than one solution?

Solution to Puzzle 3. This time A = {4, a, 2a}, so a could reasonably be 1, 2, or
3. If a = 1, then A contains 1 and 4, forcing a > 1, a contradiction. If a = 2, then
A = {2, 4}. This indeed has cardinality 2. So perhaps we have found the solution? Not
so fast: if a = 3, then A = {4, 3, 6} and we get a set of cardinality 3. So there are two
solutions. �
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Is there a puzzle with three solutions? Consider A = {1, 2, a, a − 1}. The possible
cardinalities are a = 2, 3, 4, which yield the solutions {1, 2}, {1, 2, 3}, and {1, 2, 4, 3},
respectively. So all three potential cardinalities lead to solutions.

We can keep going, to get puzzles with four solutions, five solutions, and so on. For
n ≥ 2, the following cardinality puzzle has n solutions:

An = {n, n + 1, . . . , 2n − 2, a, a + 1, . . . , a + n − 1}.
For example, let n = 6. Then A6 = {6, 7, 8, 9, 10, a, a + 1, . . . , a + 5}. The six pos-
sible cardinalities and their corresponding solutions are:

a = 6: {6, 7, . . . , 11}
a = 7: {6, 7, . . . , 12}

...

a = 11: {6, 7, . . . , 16}.
Moving forward, we will restrict our attention to cardinality puzzles with unique

solutions. After all, in some moral sense, a puzzle should have exactly one solution.
We will see that there can still be quite a variety of these puzzles, as our final solution
of this section illustrates.

Solution to Puzzle 4. We are looking at A = {4, 5, a, a + 1, 2a − 1}. There are four
possible cardinalities: a = 2, 3, 4, 5. The only one that works is a = 3, which gives us
{3, 4, 5} as the unique solution. �

Unique solutions and puzzle complexity
So far, we have seen two cardinality puzzles with unique solutions. Puzzle 1 has the
unique solution {2, 3}. Puzzle 4 has the unique solution {3, 4, 5}. What other sets might
be the unique solution to a cardinality puzzle?

First note that there is not a bijection between puzzles and solutions. Consider the
puzzle A = {a, a + 1, a + 2}. We have a as possibly 1, 2, or 3. When a = 1 or a =
2, we get a contradiction. If a = 3, then A = {3, 4, 5}. This set does indeed have 3
elements, so it is the unique solution. But this is the same solution as Puzzle 4. This
says that if we want to somehow classify the sets that you get as a solution to some
puzzle, you must work backwards from the solutions.

Let’s start with an example. Consider the set

S = {1, 3, 4, 6}.
Here is a puzzle that has S as its unique solution.

Puzzle 5. What is the cardinality of the set A = {1, 3, 6, a, 18 − 3a}?
This puzzle really does have S as its solution: The only reasonable choices for a

are 3, 4, or 5. If a = 3, then we get A = {1, 3, 6, 9}, too big. If a = 5, then we get
A = {1, 3, 6, 5}, too small. If a = 4, then we get {1, 3, 4, 6}, just right.

But where did the puzzle come from? We replaced 4 with a (after all, we want
a = 4 to give the unique solution). This is not enough though, since A = {1, 3, a, 6}
has two solutions: a = 3 and a = 4. You can visualize this in Figure 1. To fix this,
we add a new line f (a) = 18 − 3a, as shown in Figure 2. This was chosen so that it
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Figure 1. Two solutions Figure 2. Puzzle 5 graphically.

passes through (4, 6) (so at a = 4, f (a) coincides with the largest constant, 6), and
(5, 3) (so at a = 5, f (a) coincides with the second largest constant, 3). Since this will
give a line with negative slope, we know at a < 4, we will have f (a) distinct from
all the constants and line y = a. Thus a = 3 is no longer a solution. And because f

intersects another line at a = 5, that cannot be a solution either.
Now generalize. Notice that we will not be able to get every set, since we insist a be

an element of the set. That is, any solution will necessarily contain its own cardinality,
i.e., be selfish. The surprising result is that this is also sufficient.

Theorem 1. A set S of natural numbers is the unique solution to a cardinality puzzle
if and only if S is selfish.

Proof. To establish the nontrivial direction, we describe a method for building a car-
dinality puzzle from any selfish set S. The only selfish set of cardinality 1 is {1}, and
this is the unique solution to the (admittedly trivial) puzzle A = {a}. Next, consider
selfish sets of cardinalty 2. That is, S = {2, c} for some constant c �= 2. If c �= 1, then
consider the puzzle A = {c, a}. Here, the two potential solutions are a = 1 and a = 2.
If a = 2, we get our desired set as a solution; while if a = 1, we get a set of size 2, a
contraction. In the case that c = 1, we can take the puzzle {a, 3 − a}. This again has
potential solutions a = 1 and a = 2. If a = 1, then we get our desired set {1, 2}, but it
has cardinality 2, a contradiction. On the other hand, if a = 2, then we also get {1, 2},
so it is the unique solution.

Now suppose |S| ≥ 3. Let k be the (true) cardinality of the set S (to avoid con-
fusion with the constant a that represents the cardinality in the puzzle). Thus S =
{k, c1, . . . , ck−1} for some constants c1 < c2 < · · · < ck−1, all distinct from k.

Consider the cardinality puzzle,

A = {c1, . . . , ck−1, a, f (a)},
where f is the linear function passing through the points (k, ck−1) and (k + 1, ck−2).
Since ck−2 < ck−1, this line has slope ck−2 − ck−1 < 0, so in particular, f (k − 1) >

ck−1 and thus not equal to any ci .
This cardinality puzzle has three potential solutions: a = k − 1, a = k, and a = k +

1. If a = k − 1, then we get the set A = {c1, . . . , ck−1, k − 1, f (k − 1)}, which has at
least k elements, a contradiction. (Notice, it has exactly k elements if some ci is k − 1.)
Similarly, if a = k + 1, then A = {c1, . . . , ck−1, k + 1, f (k + 1) = ck−2}, which has
at most k elements, again a contradiction. However, a = k produces a solution: A =
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{c1, . . . , ck−1, k, f (k) = ck−1}, which really does contain k elements and is the desired
selfish set. �

Increasing complexity Some puzzles are going to be more interesting than others.
One way to measure this is to consider how many reasonable values a might take on.
We will call this the complexity of the puzzle. The puzzles generated by the proof of
Theorem 1 will all have complexity 3 (as long as S has size at least 3). We could make
these puzzles more complex by adding additional terms that rely on a. In fact, we can
make puzzles as complex as we like.

Theorem 2. For any selfish set S with at least three elements and any n ≥ 3, there is
a cardinality puzzle with complexity n that has S as its unique solution.

Instead of giving a full proof, we will illustrate the idea by increasing the complexity
of Puzzle 5, which has solution S = {1, 3, 4, 6}. Here is a puzzle with that solution,
with complexity 5:

Puzzle 6. What is the cardinality of the set A = {1, a, 17 − 11
4 a, 1

4a + 2, 1
4a + 5}?

To see that this puzzle really has S as its unique solutions, you could consider the
five cases a = 1, 2, . . . , 5. This is easier to do graphically, as seen in Figure 3.

Figure 3. Puzzle 6 graphically. Figure 4. Upping complexity by 2.

Note that at any a < 4, the negatively sloped line f ensures there are at least 4
elements in the set. This is in part due to our choices for the slopes of the other lines.
We have tilted some of the constants in S to be lines with slope 1/4 (in general, this
would be slope 1/k), so none of these lines will intersect any other line (other than y =
a, which they already intersected as constants) to the right of a = 0. For example, the
constant y = 3 became the line f3(x) = 1

4x + 2. Note, this will require us to modify
the line f so it (still) intersects f3 at a = 5.

We can tilt as few or as many of the constants as we wish, and each constant we tilt
increases the complexity by 1. (In general, when tilting constants, start with the largest
ci and work down.) To further increase complexity, we add new lines (not replacing
constants).

Each of the new lines (as seen in Figure 4) will pass through (4, 1) (or (k, c1) in
general) and have positive slope small enough so they do not intersect any other line
before a = j , where j is the number of lines including constants (the multiset cardi-
nality). This will ensure that for every 4 < a < 7 (or k < a < j in general), there are
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j = 7 lines. We then slide the intersection of f with f3 to occur at a = 7, ensuring
that at a = 7 there are only 6 lines.

In general, only two lines can intersect at any point with a > k (because we tilted
larger constants first), so this process will work unless two lines happen to intersect at
a = j − 1. In this case, we would have j − 1 points at a = j − 1, a second solution.
We remedy this by putting the first new line through the second smallest original line
at a = j − 1. This results in j − 2 points at a = j − 1. We would still have at most
j − 1 points at j , and at least j − 1 points at any k < a < j − 1.

Symbiotic sets, knights, and knaves
Let’s now consider another way to make puzzles of cardinality more complex: make
them about multiple sets at the same time. Instead of selfish sets, we will take a pair (or
more) of sets each containing the cardinality of another. One might call these symbiotic
sets. As before, let |A| = a, but now also |B| = b and so on. Here are a few puzzles to
try.

Puzzle 7. What are the cardinalities of A = {1, 2, b} and B = {2, a}?
Puzzle 8. What are the cardinalities of A = {3, b} and B = {1, a, b}?
Puzzle 9. What are the cardinalities of A = {2, 3, 6, a, b + 3} and B = {a, 5}?

As with the one-set puzzles, a good strategy for solving the puzzles is to consider
the possible cardinalities of each set and proceed by cases. Usually, it is enough to
consider the possible cases for just one of the sets, as this will give information about
the other automatically.

Solution to Puzzle 7. Given A = {1, 2, b} and B = {2, a}, the cardinality of A is
either 2 or 3. In the case that a = 3, the set B becomes B = {2, 3}, which makes b = 2.
But then A = {1, 2}, which only has cardinality 2, a contradiction. On the other hand,
if a = 2, then B = {2}, so b = 1. This is consistent, given A = {1, 2} of cardinality 2.

Thus, a = 2 and b = 1. �
Note that this puzzle has a unique solution. In fact, all the puzzles in this section

do, but this is not at all necessary. Consider A = {1, b} and B = {2, a}. If a = 2 then
B = {2} but then a = 1. On the other hand, if a = 1 then B = {1, 2} making b = 2
and thus a = 2.

Symbiotic sets, even more so than one-set puzzles, remind us of the classic knights
and knaves logic puzzles. In these puzzles, you encounter a number of trolls, each of
whom is either a knight, who always tells the truth, or a knave, who always lies. You
must determine the clan of each speaker based only on their statements.

The simplest possible puzzles involve a single speaker who either says, “I am a
knight” or “I am a knave.” In the first case, there are two possible solutions; in the
latter there are none (the statement is inconsistent). This reminds us of A = {1, a} and
A = {2, a}, in at least as far as the first has two solutions (a = 1 or a = 2 are both
consistent), and the latter has none.

Most knights and knaves (K&K) puzzles involve more than one troll. Here is a
simple example. Suppose you meet two trolls, who make the following statements.

Troll 1: Troll 2 is a knave.
Troll 2: We are both knights.
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This puzzle has a unique solution: Troll 1 is a knight and Troll 2 is a knave. To see
this, suppose first that Troll 1 is a knave. That would make Troll 2 a knight (based
on what Troll 1 says). But looking at the statement of Troll 2, we see that it must be
false, a contradiction. So Troll 1 must be a knight. This means Troll 2 really is a knave,
which is consistent (his statement is false).

Now let’s return to our cardinality puzzles. Compare the proof of the K&K puzzle
to the solution of Puzzle 8.

Solution to Puzzle 8. The cardinality puzzle A = {3, b} and B = {1, a, b} has a
unique solution: A = {2, 3} and B = {1, 2} (so a = 2 and b = 2). To see this, suppose
a = 1. That would mean that b = 3 (based on what A is defined as). But looking at B,
we would then only have two elements, a contradiction. So a must be 2. This means
it cannot be that b = 3 (that would leave A with only one element) so then we have
B = {1, 2, b}, so b = 2. �

It is not just that the K&K puzzle and cardinality puzzle both have unique solutions,
or that their solutions match up in some way. The proofs for those solutions basically
match up as well.

Let’s explore this connection further. The K&K puzzle had Troll 1 a knight and
Troll 2 a knave. In the solution to the cardinality puzzle, the set A has the “expected”
cardinality, while B does not. That is, A is shown with 2 elements, and those elements
turn out to be distinct, while B is shown with 3 elements, but one of those elements
overlaps with another. So B is tricky in a way: not what it claims to be. You might even
say that the set B is lying to us.

In fact, we constructed Puzzle 8 by starting with the K&K puzzle. Here’s how:
Troll 2 says that both trolls are knights. He is making a claim about both trolls, so
the set B should mention both cardinalities. Further, if Troll 2 is going to be telling the
truth, then both these cardinalities should be equal to the number of elements displayed
by their sets. We pick A in a way that would make a = 2 and b = 3. However, Troll 1
claims that Troll 2 is a knave, so the set A should mention b and should, if all its
elements were to be distinct, make b not the number of elements displayed by B. So
put 3 and b both into A, since B is displaying three elements.

What about going the other way? Can we find a K&K puzzle to match a given
cardinality puzzle? Take Puzzle 9 for example. First, here is the solution.

Solution to Puzzle 9. We are given A = {2, 3, 6, a, b + 3} and B = {a, 5}. If b = 2,
then it must be that a �= 5. But then there will be 5 elements in A, as it must be that
A = {2, 3, 6, 4, 5}, a contradiction. The other possibility is that b = 1, which happens
exactly when a = 5. Then A = {2, 3, 6, 5, 4}, which does indeed have 5 elements. �

We want a K&K puzzle that will have the following solution, translated from the
Puzzle 9’s solution above:

If Troll 2 is a knight, then Troll 1 will be a knave, but that would make Troll 1’s
statement true. The other possibility is that Troll 2 is a knave, which happens exactly
when Troll 1 is a knight, and we see that his statement is indeed true.

We can capture all this with the following puzzle.

Troll 1: If Troll 2 is a knight, then I am a knave.
Troll 2: Troll 1 is a knave.

We could also have derived this puzzle by looking purely at the cardinality puzzle,
not its solution. Notice that the set A claims to have 5 elements, and the set B claims
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2. But for b = 2 it must be that a �= 5, so B is claiming that A’s claim is false. To get
Troll 1’s statement, A claims that a �= b + 3. The claim is that if b = 2 then a �= 5,
and that if b �= 2 then a = 5. Translated: if B is a knight, then A is a knave, and if B is
a knave, then A is a knight. But A is also claiming that a = 5, so we really only need
the first half of the conjunction.

We are making a pretty bold insinuation: that every cardinality puzzle has a cor-
responding K&K puzzle, and that every K&K puzzle has a corresponding cardinality
puzzle. Perhaps there is a solution-preserving isomorphism between puzzles of the two
sorts, where solution is meant to include the proof. But surely this is false: there are
infinitely many cardinality puzzles that correspond to I am a knave. Or perhaps we
would say that there are infinitely many ways to restate I am a knave?

Unfortunately, our insinuations are only backed up by circumstantial evidence at
this point. For every K&K puzzle we have looked at, we have successfully been able
to create a corresponding cardinality puzzle (we think this is the more interesting di-
rection, as it suggests a method for constructing new cardinality puzzles). But while
we have some heuristics for this conversion, there seems to be too much tweaking that
needs to be done for us to concisely describe a full algorithm.

The more substantive problem is that it is difficult to classify what makes something
a K&K puzzle. It might be possible to get some partial correspondence by restricting
K&K puzzles to a specific type, but we will not explore this further here. Instead,
we invite the reader to consider the meta-puzzle of taking a given K&K puzzle and
constructing a cardinality puzzle to match. To give some suggestions at a strategy,
here is a suitably complicated K&K puzzle to try.

Troll 1: Only one of us is a knave.
Troll 2: No, only one of us is a knight.
Troll 3: We are all knaves.

Where to start? You will want to use three sets A, B and C. The set A will mention
b and c (to say only one of us is a knave is to say that exactly one of the other trolls is
a knight). The set B will mention a and c (Troll 2 is essentially saying that both of the
other trolls are knaves). The set C will mention a, b, and c, since it must claim that all
three sets are mistaken.

It is easier when everything can fit together without unwanted interference. To this
end, “pad” the sets with some extra constants to ensure that the potential cardinalities
of each are disjoint. For example, you could add constants to the sets to ensure that
5 ≤ a ≤ 7, 2 ≤ b ≤ 4, and 8 ≤ c ≤ 11. These ranges are not obvious, except they will
happen to work in this case.

So now we have the number of constants in each set, but what are they? Start with
B. To claim that both of the other sets are knaves is to claim that their cardinalities are
not a = 7 and not c = 11 (the maximum in each range will correspond to the set being
truthful). This tells us that we want B = {7, 11, a, c}.

That was the easy one. The set C should claim that all three sets are untruthful, so
include the constants 4, 7, and 11 (plus five others as part of the padding).

The set A is even more of a challenge, as its troll makes a disjunctive statement:
either B or C is not its maximum cardinality. So we want either b = 4 but c �= 11 or
vice versa. One way to ensure this is for A to include both b and c − 7 (the claim of
A being that these are distinct, so they cannot both be 4). But again, we need to play
with the other constants to make enough room for the consistent solution to really be
consistent.

Ready for the solution to the meta-puzzle? Here you go.
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Puzzle 10. What are the cardinalities of the following sets?

A = {1, 3, 5, 6, 7, b, c − 7}
B = {7, 11, a, c}
C = {4, 7, 11, 12, 13, 14, 15, 16, a, b, c}.

Open questions
To conclude, we share a few directions an interested reader could explore.

All of the sets we have described above are presented by listing elements. If we
allow set builder notation, we can still get some interesting puzzles. Consider,

A = {x ∈ Z
+ : x ≤ a}.

This puzzle has infinitely many solutions! In fact, A can have any finite cardinality.
Even more interesting: the puzzle A = {x ∈ Z

+ : x = 13 or x ≤ a} has infinitely
many solutions, but only for a > 12. Here is a similar puzzle: A = {x ∈ N : x ≤ a},
where we take N = {0, 1, 2, . . .}. This has no solutions for a finite. However, if a = ℵ0

(the cardinality of N), then A = N is a solution.

Question 1. Which (infinite) sets of cardinalities are possible for solutions to a single
cardinality puzzle? What happens if we allow infinite cardinals, or even ordinals, to
be elements of the set or solutions?

Notice that none of the paradoxes or puzzles in this paper would be possible if we
consider A to be a multiset instead of a set. The number of elements listed in a multiset
is simply the cardinality of that multiset. However, multisets do open the door for a
suite of puzzles with a similar feel. Let m(k) denote the multiplicity of the element k

(i.e., the number of times it appears in the multiset). What is the multiplicity of 1 in
the following multiset?

A = {1, m(1)}.
If m(1) = 1, then A contains 1 twice (so m(1) = 2). If m(1) = 2, then A = {1, 2}, so
m(1) = 1.

Question 2. What sorts of interesting puzzles can we make that involve multiplicity?
Moreover, take any statistic about a set or multiset, and allow it to be listed as an
element in the set/multiset. Are there puzzles that refer to the mean? The maximum?

Returning to our puzzles of cardinality, we argued above that any selfish set is the
unique solution to a cardinality puzzle, in fact with arbitrarily large complexity. The
functions of a we used were always linear, but when we increased complexity, the lines
had non-integer slopes. Perhaps you find such a puzzle inelegant.

Question 3. For every selfish set A and every integer n ≥ 3, is there a cardinality
puzzle of complexity n and unique solution A that uses only linear functions with
integer coefficients? If not, which sets have such puzzles?

While thinking about the elegance of a puzzle, we also wonder how difficult it
would be to construct puzzles where, at every potential cardinality, you get a cardinal-
ity that is only one more or one less than that supposed solution. This is one way in
which a puzzle might be less obvious, but there might be other ways to measure this
as well. For example, the solution to a puzzle might be much smaller than the number
of elements displayed in A (i.e., the multiset cardinality).
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Question 4. Can the difference between the cardinality of the solution and the mul-
tiset cardinality of the puzzle be controlled independently of the complexity?

In terms of the knights and knaves connection, the difference between the solution’s
cardinality and the puzzle’s multiset cardinality is a measure of how much the set is
lying. This doesn’t make much sense in classical logic: a troll is either a knight or
a knave. This suggests a way in which cardinality puzzles are more expressive than
K&K puzzles, so perhaps cardinality puzzles are better suited to model non-classical
logic. See [4] for some examples of how K&K puzzles behave in this realm. Similarly,
Smullyan’s books contain many variations on K&K puzzles; perhaps there is a more
general sort of puzzle to which cardinality puzzles correspond.

Question 5. What kinds of cardinality puzzles are there that simulate the different
versions of knights and knaves puzzles?

There is still more to do in order to prove that every K&K puzzle corresponds to a
cardinality puzzle. This would require a formal definition of a K&K puzzle, and likely
require a method to capture logical connectives by cardinality puzzles. This would be
a fun project for a student interested in logic.

We have given one suggestion of how the K&K puzzles relate to cardinality puzzles,
but perhaps there are other ways to match these up. Is there a single-set puzzle that
models a K&K puzzle involving two (or more) trolls? We would want to have the
variable expressions overlap, or not, in some combination that agrees with the possible
solutions to the K&K puzzle.

Question 6. What is the best way to match up cardinality puzzles with K&K puzzles,
and is there a bijective correspondence between these?

Finally, the multiple-set cardinality puzzles we used to model K&K puzzles would
be interesting to study in their own right.

Question 7. Is every pair of symbiotic sets the unique solution to a two-set cardinal-
ity puzzle?

Or forget about self-reference entirely and do a new Putnam-like problem:

Question 8. How many minimal symbiotic sets are subsets of {1, 2, . . . , n}?
Summary. We investigate a new sort of puzzle of self-reference, in which the puzzler is asked
to find the cardinality of a set defined in terms of its own cardinality. We discover which sets are
the unique solution to such puzzles and see how puzzles for such sets can be made arbitrarily
complex. Then we compare our new cardinality puzzles to the classic puzzles of knights and
knaves.
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